• Title/Summary/Keyword: 가설공법

Search Result 87, Processing Time 0.027 seconds

Temporary Stresses by Applying Construction Methods for Continuous Steel-Concrete Double Composite Box Girder Bridges (이중합성 연속 박스거더교에 대한 가설공법별 발생 단면력 검토)

  • Choi, Hang Yong;Suh, Suk Koo;Oh, Myung Seok;Oh, Sae Hwan;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.681-693
    • /
    • 2007
  • Construction techniques for continuous steel bridges were applied to steel-concrete double composite box girder bridges. Concrete depth and length at the bottom of the steel box in the negative moment region were determined by plastic moment region and negative moment region of the double composite section, respectively. Construction methods, such as crane lifting method, free cantilever method, and incremental launching method were used for the analysis of the construction stage. Two cases of the construction phase were considered and analyzed for the stress resultant of double composite girders. The behavior of the nose-deck elastic system was examined by three-dimensionless parameters, such as the nose length, the unit weight of the launching nose, and the flexural stiffness of the nose. The adoption of the launching nose has become an effective solution in the incremental launching of steel-concrete double composite box girder bridges.

Introduction to Constrction Method for P.C BOX GIRDER by Precast Element (Precast Element를 이용한 P.C BOX GR. 공법소개)

  • 이광민;김수보;김호근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.163-168
    • /
    • 1991
  • 최근 도시지역에서의 교량가설시 P.C BOX GR. 교량이 차지하는 비율이 점차 증가하면서 도심교통난 유발을 최소화 할 수 있는 가설공법에 대한 필요성이 증대되고 있는 상황에서 Precast Element를 이용하여 P.C BOX GR.의 Cantilever 길이를 길게하여 MAIN BOX GR.의 폭을 감소시켜 광폭(B=20M이상)의 상부구조물 일지라도 하부구조를 일주식 교각으로 설치가능할 뿐만 아니라 MAIN BOX GR. 가설시 어떤 가설공법도 적용가능하므로 현장여건에 가장 적합한 가설공법을 용이하게 P.C BOX GR. 공법을 소개하고자 한다.

  • PDF

Erection Method for Marine Section of Double Deck Warren Truss in Young Jong Grand Bridge (영종대교 복층 Warren Truss 해상구간 가설공법)

  • Kim Jeong-Woong;Seo Jea-Hwa;Yang Mu-Seok;Yuk Il -Dong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.232-239
    • /
    • 2001
  • Young Jong Grand Bridge is approach traffic road of New Inchon International Airport which covers hub airport function in northeast asia. The total span length of this bridge is $4,420{\cal}m$ and this main bridge type is, the first in the world, Double Deck Self Anchored Suspension Bridge, designed as double deck systems to be arranged by road and railroad. Approach bridges to be connected with main span also are composed double deck steel truss and steel box girder to consider a continuity with this span. Our company erected $1,375{\cal}m$(about 60,000tons) of double deck steel truss bridge type which is composed by 6 traffic lane on upper deck and 4 traffic lane and Double track railroad on lower deck. The original installation method of this bridge was planed to install about 75 meters bridge blocks to use floating crane, after temporary bent was constructed between permanent piers. But this method which had to construct many temporary bents in the sea had the matter that construction periods can become lengthen and construction cost can be risen. To overcome the uncertainty to ensure high qualify of bridge and economic project execution, our company developed new bridge erection method to assure both quality control and economic construction work. The new erection method which was developed by us was one that could transport and install long bridge block, $120{\cal}m$ unit at a time and that temporary bent was not required. We hope that this paper is used as technical data which will erect bridge in the western sea and others marine region.

  • PDF

고속철도 PC Box교량 잭업을 위한 교각코핑부 안정성 검토

  • 강진욱;이명섭;김진욱
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.51-56
    • /
    • 2004
  • 경부고속철도 제7-2공구 현장은 충청북도 영동군 심천면 초강리에서 영동읍 화신리에 이르는 총연장 10km의(182k800∼199k800) 고속철도 노반공사 현장으로서 총 연장 중 교량공은 3.6km, NATM터널 2.6km, 그리고 토공 3.8km로 구성되어 있다. 이중 교량공은 PC Box 연속교(2@40m, 2@25m, 3@25m 등)가 주를 이루고 있으며 가설공법으로는 현장타설공법인 FSM(Full Staging Method) 공법을 채택하였다. 교량의 받침 형식으로는 고정단에는 포트받침 그리고 가동단에는 탄성받침이 적용되었다(참조 : www.ktx7-2.wo.to). (중략)

Evaluation of Train Running Safety During Construction of Temporary Bridge on Existing Railway (기존선에서 가설교량 시공에 따른 열차의 주행안전성 평가)

  • Eum, Ki-Young;Bae, Jae-Hyoung;Choi, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.234-239
    • /
    • 2011
  • Installing the temporary bridge after excavating the railway requires installing movable cross beam, but as it doesn't requires isolating the catenary or cutting the rail, it's applicable to double-track with frequent operation. In this study, a displacement meter was placed on temporary bridge to monitor the displacement pattern in curve section (R400) completed using temporary bridge method, and wheel load, lateral pressure and derailment coefficient were measured to evaluate the load imposed on track and the stability in curve section (R400) for quantitative evaluation of training running safety. As a result of the measurement, when trains passing over a temporary bridge, the maximum value of Wheel load and Lateral Force is analyzed as the 51% and 81% of standard level according to foreign country's performance tests, There is no trouble with stability analysis in Wheel load and Lateral Force occurring. Additionally, Wheel load and Lateral Force considered as the safety standard are tested 49% of limiting value regardless of trains, which the norm value quite well, there is no problem with train running.

Permanent Basement Wall Convergence Method Using a PHC Pile (PHC 파일을 이용한 영구벽체 융합 공법)

  • Ryu, Soo-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.6
    • /
    • pp.163-169
    • /
    • 2015
  • This study was intended to suggest a new-concept construction method of permanent basement wall combined with earth retaining wall by using PHC piles to overcome the disadvantages of conventional CIP methods or the like which have been used just for earth retaining walls during field construction, and to determine its applicability. PHC piles are characterized by the reliable quality attributed to prefabrication (shop fabrication) as well as superior concrete strength and prestressing steel strength to that of CIP in the aspect of materials, and also higher bending moment than that of CIP in the aspect of structure.