• Title/Summary/Keyword: 가새강성

Search Result 37, Processing Time 0.02 seconds

Seismic Retrofit of Existing RC Structure Using Hysteretic Dampers (이력댐퍼를 이용한 기존 RC구조물의 내진보강)

  • Choe, Seon-Yeong
    • Computational Structural Engineering
    • /
    • v.26 no.2
    • /
    • pp.37-42
    • /
    • 2013
  • 준공 후 상당한 시간이 지나 내진설계가 되지 않았거나 내진상세가 이루어지지 않은 건물의 부족한 내진성능을 보완하기 위한 방법의 하나로 좌굴이 제한된 가새형 댐퍼를 적용할 수 있다. 이 방법을 적용할 경우, 기존 내진보강법의 불확실성을 줄일 수 있었음에도 불구하고, 댐퍼의 설계과정이 복잡하여 실무에 적용하기 어려웠다. 그러나 본 원고에서는 강성과 강도개념을 적용한 댐퍼의 설계법을 적용함으로써, 실무에서 쉽게 적용할 수 있도록 하였다. 준공된 지 16년이 지난 비틀림 비정형 건물에 대한 내진성능을 평가한 후, 가새형 댐퍼로 보강한 결과는 다음과 같다. (1) 일방향해석결과 나타난 골조별 하중-지붕변위의 관계를 이용하여, 연약골조의 강성을 강한 골조의 강성과 일치시키고, 이 강성비로부터 댐퍼가 부담하는 최적의 내력비율을 정하여 내진보강을 수행한 결과, 가새를 설치한 방향으로는 가새형댐퍼가 비틀림 방지와 연성증대효과를 구조물에 부여하여 성능이 획기적으로 증가하였다. 또한, 그 가새의 직각방향 하중에 대해서도 가새를 설치함으로써 비틀림 강성이 증가하고, 가새와 코어벽체가 인장과 압축으로 횡력에 저항하여 횡저항 성능이 증가하였다. (2) 내진성능이 부족한 비틀림 비정형 건물의 내진성능을 증진시키기 위해 가새형 댐퍼를 적용함에 있어, 댐퍼의 강성을 이용하여 구조체의 비틀림 거동을 최소화하고, 연성을 증진시키는 방법을 체택할 경우, 실무자들이 보다 쉽게 적용할 수 있으면서 그 효과도 상당히 클 것으로 기대된다.

tudy on Seismic Design of Buckling Restrained Braced Frame System Using Inverse Stiffness Method (역강성 설계법을 이용한 비좌굴 가새골조시스템의 내진설계에 관한 연구)

  • Kim, Se-Hyun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.106-114
    • /
    • 2006
  • This study proposed the applicability of inverse stiffness method on the seismic design for steel frame with buckling restrained braces and the design results were compared with former research's. The concept of this method is simple and efficient. Furthermore it is able to reflect the high mode's effect and control the ductility factors of each story individually. Design results using the proposed method showed that according to increase of the given target drift, the areas of brace generally decreased but partially increased in some stories of the tall structure with very large ductility. And the post yield stiffness ratio's variation had more effect on the design results in the small post yield stiffness ratio.

Optimal Design of Viscoelastic Dampers and Support Braces (점탄성 감쇠기와 설치용 가새의 최적설계)

  • 박지훈;이상현;강경수;황재승;김진구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.45-55
    • /
    • 2001
  • The purpose of this paper is to present the optimal design method of viscoelastic dampers and support brace stiffnesses. The dynamics of visco-elastic dampers and support braces connected in series is modeled by state equation. A constraint on maximum story drifts which are computed using RMS\`s of story drifts and peak factors is added to the optimization problem. The number of variables is reduced by including the constraint associated with the dynamic behavior of the structure in the procedure to compute the gradient of the inequality equation about constraint on the maximum story drifts. In the design example, it is confirmed that the design of dampers considering support brace stiffnesses is necessary when sufficient brace stiffnesses cannot be supplied. It is also found that unnecessary brace stiffnesses can be removed by adding brace stiffnesses to optimal design variables and that the increase of damper volumes to compensate for the variation of maximum story drifts is pretty small.

  • PDF

Seismic Performance Evaluation of Reinforced Concrete Frames Reinforced with Chevron Bracing System (역V형 가새로 보강된 RC 골조의 내진성능평가)

  • Ha, Heonjun;Oh, Keunyeong;Lee, Kangmin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2018
  • In this study, seismic performance of existing RC frames reinforced with steel chevron bracing systems was experimentally evaluated. For this purpose, the unreinforced base specimen and seismically reinforced specimens with steel chevron bracing systems were fabricated and tested. Both strength and stiffness of the reinforced specimens were targeted about 2-3 times larger than the base specimen. Test results showed that the stiffness, strength, and ductility of the reinforced specimens considerably improved than those of unreinforced base specimen. Therefore, the results from this study could offer the basic information on the developing design guideline for the seismic reinforcement of RC frames.

Structural Performance Evaluation of a Multi-span Greenhouse with Venlo-type Roof According to Bracing Installation (가새 설치에 따른 벤로형 지붕 연동온실의 구조성능 평가)

  • Shin, Hyun Ho;Choi, Man Kwon;Cho, Myeong Whan;Kim, Jin Hyun;Seo, Tae Cheol;Lee, Choung Kuen;Kim, Seung Yu
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.438-443
    • /
    • 2022
  • In this study, the lateral loading test was performed to analyze structural performance of multi-span plastic greenhouse through full-scale experiment and numerical analysis. In order to analyze the lateral stiffness and stress, we installed 9 displacement sensors and 19 strain gauge sensors on the specimen, respectively, and load of l mm per minute was applied until the specimen failure. In the comparison between the full-scale experiment and the structural analysis results of a multi-span greenhouse with venlo-type roof according to bracing installation, there was a large difference in the lateral stiffness of the structure. By installing a brace system, the lateral stiffness measured near the side elevation of the specimen increased by up 44%. As the bracing joint used in the field did not secure sufficient rigidity, the external force could not be transmitted to the entire structure properly. Therefore, it is necessary to establish a bracing construction method and design standards in order for a greenhouse to which bracing applied to have sufficient performance.

Seismic Response of Structures with Buckling-Restrained Braces (좌굴방지 가새가 설치된 건물의 지진응답)

  • 김진구;최현훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.197-207
    • /
    • 2002
  • Energy dissipation capacity and earthquake responses of steel structures installed with unbonded braces(UB) were investigated. Parametric studies were performed for a single-degree-of-freedom structure under harmonic loads, and optimum yield strength of unbonded braces were derived. Nonlinear dynamic time history analyses were carried out to investigate the seismic response of multi-story model structures with UB having various size and strength. Various techniques were applied to determine proper story-wise distribution of UB in multi-story structures. The analysis results show that the maximum displacements of structures generally decrease as the stiffness of UB increases. However for some natural frequencies and seismic loads the maximum displacement and accumulated damage increases as the stiffness of UB increases.

Reversed Lateral Load Tests on RC Frames Retrofitted with BRB and FRP (좌굴방지가새와 FRP로 보강된 RC골조의 반복 횡하중 실험)

  • Lee, Han-Seon;Lee, Kyung-Bo;Hwang, Seong-Jun;Cho, Chang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.683-692
    • /
    • 2011
  • In piloti-type low-rise RC residential buildings, severe damages have been usually concentrated at piloti stories under the earthquake. In this study, a piloti story was retrofitted by installation of buckling-restrained braces (BRB's) to increase strength and stiffness of piloti story and by application of fiber reinforced polymer (FRP) sheet on columns to avoid the brittle shear and axial failure of columns. To verify this retrofit performance, reversed cyclic lateral load tests were performed on 1:5 scale bare and retrofitted frames. The test results showed that yield strength (43.2 kN) appeared to be significantly larger than design value (30 kN) due to the increase of strength in the compression side, but the stiffness value (11.6 kN/mm) turned out to be approximately one-half of the design value (24.2 kN/mm). The reasons for this difference in stiffness were due to slippage at joint between the frame and the BRB's, displacement and rotation at footing. The energy absorption capacity of the retrofitted frame was 7.5 times larger than that of the bare frame. The change of the number of load cells under the footing from 2 to 1 reduced lateral stiffness from 11.6 kN/mm to 6 kN/mm, which was only three times larger than that of the bare frame (2.1 kN/mm).

Experimental Evaluation for Structural Performance of Diagrid BRB Structural System (Diagrid BRB의 실험적 구조성능 평가)

  • Lee, Jong-Hyock;Ju, Young-Kyu;Kim, Young-Ju;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.261-269
    • /
    • 2010
  • It is now possible to design buildings in various forms using a diagrid structural system, which is the one of the most useful structural systems. It is difficult to design and construct the connections, however, and the bucklings in braces weaken the seismic performance of structures. In this study, the initial stiffness, ductility, and energy-dissipated capacity of a diagrid and a diagrid BRB were evaluated via frame tests. The results of the cycling load tests showed that the diagrid BRB had better initial stiffness and ductility, and dissipated extra energy after the BRBs were yielded.

Study on the Nonlinear Analysis Model for Seismic Performance Evaluation of School Buildings Retrofitted with Infilled Steel Frame with Brace (철골 끼움가새골조로 보강된 학교건물의 내진성능평가를 위한 비선형 해석 모델에 관한 연구)

  • Yoo, Suk-Hyeong;Ko, Kwan-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.65-72
    • /
    • 2022
  • Recently, damage to buildings due to earthquakes in Korea occurred mainly in school buildings and Piloti-type multi-family houses, highlighting the need for seismic retrofit for buildings of the same type. In the early days of the seismic retrofit project for school facilities, various patented methods using dampers as a ductile seismic retrofit method were applied without sufficient verification procedures. However, in 「School Facility Seismic Performance Evaluation and Retrofit Manual, 2021」, when the patented method is applied, it must be applied through a separate strict verification procedure, and instead, the strength/stiffness retrofit method was induced as a general method. In practice,when evaluating seismic performance for retrofit by infilled steel frame with brace, the analysis model is constructed by directly connecting only the steel brace to the existing RC member. However, if the frame is removed from the analysis model of the infilled steel frame with brace, the force reduction occurring on the existing RC member near the retrofit is considered to be very large, and this is judged to affect the review of whether to retrofit the foundation or not. Therefore, in this study, preliminary analysis with variables such as whether or not steel frame is taken into account and frame link method for the analysis model of RC school building retrofitted by infilled steel frame with brace and nonlinear analysis for actual 3-story school building was performed, and basic data for rational analysis model setting were presented by comparing preliminary analysis and pushover analysis results for each variable.

Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure (건축구조물의 층전단력 분포에 기초한 마찰감쇠기의 최적설계)

  • Lee, Sang-Hyun;Min, Kyung-Won;Park, Ji-Hun;Lee, Roo-Jee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.21-30
    • /
    • 2005
  • In this study, a seismic design methodology for friction dampers based on the story shear force distribution of an elastic building structure is proposed. First, using two normalization methods for the slip-load of a friction damper, numerical analyses of various single-degree-of-freedom systems are peformed. From those analyses, the effect of the slip-load and the brace stiffness was investigated and the optimal silliness ratio of the brace versus original structure was found. Second, from the numerical analysis for five multi-story building structures with different natural frequency and the number of story, reasonable decision method for the total number of installation floor, location of installation and distribution of the slip-loads are drawn. In addition, an empirical equation on the optimal number of installation floor is proposed. Finally, the superiority of the proposed method compared to the existing design method is verified from the numerical analysis using real earthquake data.