버츄얼 유튜버로서 자신의 동작을 3D 가상 캐릭터로 나타내고, SNS 에서 춤을 공유하는 경우가 많아졌다. 본 논문에서는 2D 영상에서 MediaPipe BlazePose 모델로 추정된 사람 포즈를 3D 인체 모델인 SMPL 에 피팅하여 사용자 정의 3D 모델을 생성하는 방법을 제안한다. 이를 통해 자신의 춤 영상으로 3D 모델을 생성하여 공유하거나, 기존의 춤 동영상으로 3D 모델을 생성하여 댄스 게임에 사용할 수 있다. 이처럼 본 기술은 예술 및 엔터테인먼트 분야에서 다양하게 활용될 수 있다.
본 논문은 딥러닝을 기반으로 한 가상 피팅 기능을 갖춘 중고 의류 거래 시스템의 구현을 소개한다. 제안된 시스템은 사용자가 중고 의류를 온라인으로 시각적으로 착용하고 핏을 확인할 수 있는 기능을 제공한다. 이를 위해, 합성곱(CNN) 알고리즘을 사용하여 사용자의 신체 형상과 의류의 디자인을 고려한 가상 착용 모습을 생성한다. 이를 통해 구매자는 온라인에서 실제로 의류를 입기 전에 핏을 미리 확인할 수 있으며, 이는 구매 결정에 도움을 준다. 또한, 판매자는 시스템을 통해 정확한 의류 사이즈와 핏을 제시할 수 있어 구매자의 만족도를 높일 수 있다. 본 논문은 CNN 모델의 학습 절차, 시스템의 구현 방법, 사용자 피드백 등을 자세히 다루고, 실험 결과를 통해 제안된 시스템의 유효성을 입증한다.
최근 화제인 가상 아이돌의 춤 제작에 많은 자원 및 비용이 발생한다. 만일 춤을 자동으로 생성해 3D 모델에 피팅하면 이러한 비용을 줄일 수 있으며, 다양하고 복잡한 춤의 구현도 가능할 것이다. 또한, 댄스 게임을 통해 춤을 배우고 즐기는 사람들이 많지만, 경험할 수 있는 춤이 한정적이며, 모션 인식 정확도가 낮다는 단점이 있다. 따라서 본 논문에서는 트랜스포머 구조의 인공지능 모델을 통해 음악에 어울리는 3D 춤 모션을 자동으로 생성하고, 3D 자세 추정 모델을 사용해 사용자의 모션을 추정한 후, 두 모션의 유사도를 랜드마크 3D 좌표로 계산하여 판정하고자 한다. 이는 1 인 댄스 룸 또는 댄스 게임에 활용되어 발전 가능하다.
This study analyzed a somatotype of teenager's that was suitable to improve the reality of a virtual model size. We analyzed 843 teenagers 12-18 years old from the 6th Size Korea data. First, factor analysis was done for abstracting new criteria and dividing the somatotype; subsequently, we selected the waist height proportion to stature (body proportion) and drop (torso shape). Next, the cluster analysis was done with these criteria; subsequently, 5 body proportion types and 7 torso shapes were distinguished. A virtual model size for 4 somatotype with more than 50 persons was also designed by a regression analysis that constituted sizes for each factor. The designed model size was compared with body size as well as with Clo's virtual model size. The research model showed a high similarity in sizes with body as well as improved reality over the Clo model that presented size problems such as low waist height, bigger bust, and smaller thigh circumference than the real body.
With rapid expansion in e-retailing of apparel business, personalized fitting model service shows the possibility as the differentiated marketing strategy in cyber shopping. According as necessity of personalized fitting model construction rises, it is tried personalized fitting model creation in several fields such as computer engineering, mechanical engineering, information engineering. But, because existent study was concentrated only on human body modeling, it does not reflect average morphological characteristics of human body properly. In this study, we wish to examine if morphing is fit for expressing characteristic of average human body shape and suggest desirable morphing. We used 3-D scan data of 254 Korean middle aged men collected by Size Korea 2004. The result of this study are as follows: Lower body types were categorized by height hip girth and lower drop(hip girth-navel girth) which were main factors of lower body shape. Then each factor was divided into 3 groups respectively, 30% in the middle, over 30%, under 30%. In 27 groups, the group which belonged to 30% in the middle of height, 30% in the middle of hip girth, 30% in the middle of lower drop was selected as a representative group. We tested geometrical figure by differ volume, tilt, position of point. And we created a representative type of men's lower bodies by morphing the representative group and analyzed it's horizontal, vertical sections. A representative type which was created by morphing reflected a real body and changed realistically at the part of hip, crotch, calf muscle and so on. A cross sections of a representative type were similar to average cross sections of the representative group in size and shape. So it was proved that morphing was successful.
본 연구에서는 주어진 옷감 시료의 정적 드레이프 모양으로부터 해당 옷감을 시뮬레이션하기 위해 필요한 시뮬레이션 파라미터를 추정하는 데이터 기반 학습법을 제시한다. 정적 드레이프의 모양을 형성하기 위해 의류 산업계에서 옷감을 물성에 따라 분류하기 위해 사용하는 쿠식 드레이프 (Cusick's drape)에서 착안한 방법을 사용한다. 학습 모델의 입력 벡터는 특정 옷감의 정적 드레이프 모양에서 추출한 특징 벡터와 옷감의 밀도 값으로 구성되고, 출력 벡터는 해당 드레이프 결과를 도출하는 여섯가지 시뮬레이션 파라미터로 구성된다. 실제에 가깝고 편향되지 않은 학습 데이터를 생성하고자 먼저 400가지의 실제 니트 옷감에 대한 시뮬레이션 파라미터를 수집하고 이로부터 GMM (Gaussian mixture model) 생성 모델을 만든다. 다음, GMM 확률분포에 따라 대량의 시뮬레이션 파라미터를 무작위 샘플링한다. 샘플링된 각각의 시뮬레이션 파라미터에 대해 옷감 시뮬레이션을 수행하여 가상의 정적 드레이프 결과를 만들고 이로부터 특징 벡터를 추출한다. 생성된 데이터를 로그선형회기(log-linear regression) 모델로 피팅한다. 학습의 수치적 정확도를 검증하고 시뮬레이션 결과의 시각적 유사도를 비교하여 제시된 방법의 유용성을 확인한다.
스플린트는 마비, 구축 등이 나타난 환측에 적용하는 대표적인 보조기로서 전통적으로 숙련된 전문가의 수작업을 통해 제작된다. 제작과정은 열가소성 소재를 가열한 후 부드러워진 소재를 환측 부위에 접촉하며 해당 부위의 표면에 피팅시키는 과정을 반복하여 이루어진다. 이러한 전통적 방식은 저온화상의 위험, 제작자의 숙련도에 따른 완성도의 차이 등 여러 문제점을 가지고 있다. 이러한 단점을 보완하기 위하여 3D 프린팅 기술을 이용한 다양한 접근이 시도되고 있으나 3D 스캐너를 이용하는 경우 고비용의 문제, 수작업 측정의 경우 정확도의 문제 등의 단점을 나타내고 있다. 본 연구는 인체의 좌우 대칭성에 착안하여 건측 아래팔의 기하 특징을 이용하여 환측 스플린트를 3D 프린팅 기술로 제작하는 가능성에 관한 사전 연구이다. 디지털 사진과 사진측량기법을 이용하여 건강한 성인 남성으로부터 양측 아래팔의 3차원 가상 모델을 생성하고, 매 20mm 위치마다 둘레 길이 및 단면적을 측정하였다. 동일한 피험자네서 우세측과 비우세측 사이의 둘레 길이 및 단면적은 허용할 만한 수준의 차이를 나타냈으며, 우세측과 비우세측 사이에서 동일한 변수들 간에 높은 수준의 양의 상관관계를 나타냈다. 이러한 결과로부터 건측 아래팔의 기하 특징을 이용하여 3D 프린팅 기술의 적용을 통해 환측 스플린트 제작 가능성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.