본 논문은 눈 랜드마크 위치 검출과 시선 방향 벡터 추정이 하나의 딥러닝 네트워크로 통합된 시선 추정 네트워크를 제안한다. 제안하는 네트워크는 Stacked Hourglass Network[1]를 백본(Backbone) 구조로 이용하며, 크게 랜드마크 검출기, 특징 맵 추출기, 시선 방향 추정기라는 세 개의 부분으로 구성되어 있다. 랜드마크 검출기에서는 눈 랜드마크 50개 포인트의 좌표를 추정하며, 특징 맵 추출기에서는 시선 방향 추정을 위한 눈 이미지의 특징 맵을 생성한다. 그리고 시선 방향 추정기에서는 각 출력 결과를 조합하고 이를 통해 최종 시선 방향 벡터를 추정한다. 제안하는 네트워크는 UnityEyes[2] 데이터셋을 통해 생성된 가상의 합성 눈 이미지와 랜드마크 좌표 데이터를 이용하여 학습하였으며, 성능 평가는 실제 사람의 눈 이미지로 구성된 MPIIGaze[3] 데이터 셋을 이용하였다. 실험을 통해 시선 추정 오차는 0.0396 MSE(Mean Square Error)의 성능을 보였으며, 네트워크의 추정 속도는 42 FPS(Frame Per Second)를 나타내었다.
본 논문에서는 물리기반 옷감 시뮬레이션에 적합한 소리를 효율적으로 생성하기 위한 데이터 기반 합성 기법을 제안한다. 시뮬레이션에서 소리를 표현하는 방법은 크게 생성과 합성이 있지만, 합성은 실시간 애플리케이션에서 활용이 가능하기 때문에 인터랙티브한 환경에서 자주 활용되고 있다. 하지만, 데이터에 의존하기 때문에 원하는 장면에 부합하는 사운드를 합성하기는 어려우며, 기존 방법은 한 방향으로만 사운드 데이터를 검색하기 때문에 불연속으로 인한 끊김 현상이 발생한다. 본 논문에서는 양방향 사운드 합성 기법을 제시하며, 이를 통해 불연속적으로 합성되는 사운드 결과를 효율적으로 개선될 수 있음을 보여준다.
본 논문에서는 텍스처 합성 기술을 활용하여 가상의 거품 패턴 텍스처를 생성하기 위한 합성 데이터 구축 방법을 소개한다. 물리 기반 유체 시뮬레이션에서 거품 표현은 2차 효과(Secondary effects)로 분류되며, 그만큼 계산량이 큰 작업이다. 게임 업계에서는 저사양 디바이스에서도 실시간으로 게임이 실행되어야 하므로 상대적으로 계산량이 큰 물리 기반 시뮬레이션을 통해 거품을 표현하기 어렵다. 대부분 사용자가 임의로 그린 거품 패턴을 화면에 매핑하여 적은 계산량을 통해 거품을 표현하지만, 시뮬레이션을 통해 만들어진 데이터가 아니기 때문에 품질을 보장하기 어렵다. 본 논문에서는 물리 기반 시뮬레이션을 통해 만들어진 거품 패턴을 텍스처 합성 기술을 통해 재생산(Reproduction)함으로써 수작업으로 그린 거품 패턴에서는 표현하기 어려운 고품질 거품 패턴 텍스처를 만들어 낸다.
시계열 데이터는 시간에 따라 변화되는 실수 값을 저장한 것이다. 시계열 데이터에서 사용자 질의 시퀀스가 주어졌을 때, 유사한 서브시퀀스를 가지는 데이터 시퀀스를 검색하는 서브시퀀스 매칭은 매우 중요한 문제이다. 본 논문에서는 인스턴스 레벨의 새로운 서브시퀀스 매칭 방법인 I-Match (Instance-Match)를 제안한다. I-Match는 인스턴스 레벨에서 가상 윈도우를 생성하여 질의 시퀀스와 데이터 시퀀스를 비교하여 착오 해답을 줄이는 방법으로 기존 방법인 Dual Match에 비해 후보의 개수를 줄임으로써 성능을 향상시켰다. 실험을 통해 I-Match의 질의 처리 시간이 Dual Match와 비교하여 최대 2.95배 빠르며, 후보의 개수를 줄임을 보인다.
최근 들어 스마트폰과 IT기기를 이용한 서비스가 활성화되고, 어떻게 하면 두 가지 이상의 기기를 이용해 융합을 할 수 있을 것인가에 대한 관심이 대두되고 있다. 그중 하나로 모바일 분야에서 네트워크와 하드웨어의 발전을 통해 디지털 지리공간 및 컴퓨터 지도의 급속한 발전이 이뤄지고, 어떻게 하면 효율적으로 지도 데이터를 3D 환경에서 시뮬레이션하고, 가상환경을 통해 서비스를 제공할 것인가에 초점이 맞춰져있다. 본 연구에서는 증강현실과 GIS(Geographic Information System), SLM(Static LOD Model)을 융합한 기술로 증강현실의 기본적 개념과 접근법을 기본으로 지리적인 공간에서 어떻게 증강현실을 재해석하고 이를 기반으로 관련 컨텐츠의 개발과 활용을 어떻게 하는가에 목적을 가지고 있다. 본 연구에서는 기존의 3DS 모델의 데이터 구조를 제안한 SLM 데이터 포맷으로의 전환하기 위한 가능성을 분석하고, SLM 모델 포맷의 생성 및 가시화 도구는 기존 3차원 모델 포맷을 SLM 모델로 포맷을 변환하기 위한 기능 및 가시화 기능을 제공한다. 또한, 3D 가상 모델을 효율적으로 만들기 위한 포맷을 제안한다.
본 논문에서는 사회 학습의 이론의 하나인 관찰 학습 이론에 기반한 네트웍 앙상블을 위한 관찰 학습 알고리즘을 제안한다. 하나의 네트웍이 학습할 대 함께 학습되는 다른 네트웍들을 이용하여 가상 데이터를 생성하여 학습에 이용하므로써 데이터가 부족한 경우 네트웍이 과학습 되는 것을 방지고 각 네트웍의 일반화 성능을 향상시키는 동시에 앙상블의 성능도 향상시킨다. 제안된 방법을 사인 함수의 근사 문제와 중첩된 두 정규 분포의 분류 문제에 적용하고 단일 네트웍, 네트웍 위원회, Bagging 알고리즘과 비교하여 제안된 방법의 일반화 성능의 우수성을 보였다.
인터넷 쇼핑몰 허브 사이트는 분산 이기종 시스템들로 구성되는 다수의 독립된 인터넷 상점들을 연합하여 공동 포인트 적립, 공동 상품 검색 등의 통합된 서비스를 제공하는 가상 공동체이다. 본 논문에서는 인터넷 쇼핑몰 허브 사이트에서 다수의 이기종 데이터베이스에 대한 검색 질의를 생성하고, 검색 결과를 통합하여 고객에게 제공하는데 필요한 베타데이터를 효율적으로 관리하기 위해 XML을 이용하는 분산 이기종 통합 정보 검색 시스템을 제안한다.
컴퓨터 네트워크는 컴퓨터와 컴퓨터를 이어주는 단순 기능에서 벗어나 "네트워크가 곧 컴퓨터이다"라는 명제가 등장할 만큼 정보 기술 발전의 핵심으로 부각되고 있다. 따라서, 새로운 정보 통신망이나 컴퓨터의 연구 개발은 네트워크 기능의 고속화, 고성능화, 지능화에 중점을 두고 있다. 과거의 컴퓨터 통신은 단순한 터미널과 과학 계산용 서버를 연결하고 데이터 전송을 하는 목적에 국한되었으나 현재는 취급하는 정보가 다양해지고 수많은 사용자들이 개인용 컴퓨터를 갖게 되고 정보 통신망이 대규모로 확산됨에 따라 멀티미디어 데이터의 전송, 교환, 생성, 가공, 축적, 변환, 수집으로 기능이 확대되었다. 또한, 컴퓨터 그래픽 기술이 발달하므로서 네트워크를 통한 그래픽 전송 특히 3D그래픽 전송을 통한 서비스에 대한 관심이 높아지고 있다. 이에따라 개발된 VRML(Virtual Reality Modeling Language)에 대한 소개와 이를 이용한 관광 가이드 서비스개발에 대한 과정 및 3D모델링, 응용 분야에 대하여 알아 보고 가상현실 기반 가이드 서비스에 대한 기초 연구를 통해 발생된 문제점과 도출해 낼수 있는 결과 및 앞으로의 개선 방향에 대하여 알아보기로 한다. 알아보기로 한다.
LiDAR는 조사된 빛이 피사체에 반사되어 돌아오는 시간을 측정하여 거리를 측정하는 장비로서, 넓은 영역과 긴 거리에 걸쳐 실세계의 정밀한 3차원 정보를 포인트 클라우드 데이터로 제공해 준다. 이러한 대용량 포인트 클라우드 데이터는 자율주행 자동차, 로봇, 3차원 지도 제작 등 컴퓨터 비전 기술을 이용하는 다양한 분야에 널리 활용될 수 있다. 그러나 유리 구조물을 포함하는 피사체를 LiDAR로 촬영하는 경우, 유리면에서 빛의 반사로 인한 가상의 포인트가 생성되어 실제 3차원 정보를 왜곡하는 문제가 있다. 포인트 클라우드의 후속 처리를 효율적으로 수행하기 위하여, 이러한 왜곡을 제거하는 전처리 기술이 필요하다. 본 고에서는 LiDAR의 취득 원리와 3차원 포인트 클라우드의 특성을 고찰하고, 유리 반사로 인한 왜곡된 가상의 포인트를 자동으로 검출하고 제거하는 새로운 연구 주제를 소개한다.
This research paper investigates the effectiveness of using computer graphics(CG) based synthetic data for deep learning in military vehicle detection. In particular, we explore the use of synthetic image generation techniques to train deep neural networks for object detection tasks. Our approach involves the generation of a large dataset of synthetic images of military vehicles, which is then used to train a deep learning model. The resulting model is then evaluated on real-world images to measure its effectiveness. Our experimental results show that synthetic training data alone can achieve effective results in object detection. Our findings demonstrate the potential of CG-based synthetic data for deep learning and suggest its value as a tool for training models in a variety of applications, including military vehicle detection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.