• Title/Summary/Keyword: 가상전장환경

Search Result 44, Processing Time 0.022 seconds

A Technology on the Framework Design of Virtual based on the Synthetic Environment Test for Analyzing Effectiveness of the Weapon Systems of Underwater Engagement Model (수중대잠전 교전모델의 무기체계 효과도 분석을 위한 합성환경기반 가상시험 프레임워크 설계 기술)

  • Hong, Jung-Wan;Park, Yong-Min;Park, Sang-C.;Kwon, Yong-Jin(James)
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.291-299
    • /
    • 2010
  • As recent advances in science, technology and performance requirements of the weapons system are getting highly diversified and complex, the performance requirements also get stringent and strict. Moreover, the weapons system should be intimately connected with other systems such as watchdog system, command and control system, C4I system, etc. However, a tremendous amount of time, cost and risk being spent to acquire new weapons system, and not being diminished compared to the rapid pace of its development speed. Defense Modeling and Simulation(M&S) comes into the spotlight as an alternative to overcoming these difficulties as well as constraints. In this paper, we propose the development process of virtual test framework based on the synthetic environment as a tool to analyze the effectiveness of the weapons system of underwater engagement model. To prove the proposed concept, we develop the test-bed of virtual test using Delta3D simulation engine, which is open source S/W. We also design the High Level Architecture and Real-time Infrastructure(HLA/RTI) based Federation for the interoperation with heterogeneous simulators. The significance of the study entails (1)the rapid and easy development of simulation tools that are customized for the Korean Theater of War; (2)the federation of environmental entities and the moving equations of the combat entities to manifest a realistic simulation.

The LVC Linkage for the Interoperability of the Battle Lab (Battle Lab에서의 상호운용성을 위한 LVC 연동방안)

  • Yun, Keun-Ho;Shim, Shin-Woo;Lee, Dong-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • In the M&S filed, The Battle Lab is available for acquisition, design, development tool, validation test, and training in the weapon system of development process. Recently, the Battle Lab in the military of Korea is still in an early stage, in spite of importance of battle lab construction. In the environment of network centric warfare, a practical use of the M&S which is connecting live, virtual and constructive model can be applied to all field of System Engineering process. It is necessary thar the Battle Lab is not restricted by time and space, and is possible for the technical implementation. In this paper, to guarantee the interoperability of live and virtual simulation, virtual simulators connect live simulators by using the tactical data link. To guarantee the interoperability of virtual and constructive simulation, both virtual simulators and constructive simulators use the RTI which is the standard tool of M&S. We propose the System that constructed the Air Defence Battle Lab. In case of the approach of target tracks, The Air Defence Battle Lab is the system for the engagement based on a command of an upper system in the engagement weapon system. Constructive simulators which are target track, missile, radar, and launcher simulator connect virtual simulators which are MCRC, battalion, and fire control center simulators using the RPR-FOM 1.0 that is a kind of RTI FOM. The interoperability of virtual simulators and live simulators can be guaranteed by the connection of the tactical data links which are Link-11B and ATDL-1.

Development of Intelligent Multi-Agent in the Game Environment (게임 환경에서의 지능형 다중 에이전트 개발)

  • Kim, DongMin;Choi, JinWoo;Woo, ChongWoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.69-78
    • /
    • 2015
  • Recently, research on the multi-agent system is developed actively in the various fields, especially on the control of complex system and optimization. In this study, we develop a multi-agent system for NPC simulation in game environment. The purpose of the development is to support quick and precise decision by inferencing the situation of the dynamic discrete domain, and to support an optimization process of the agent system. Our approach employed Petri-net as a basic agent model to simplify structure of the system, and used fuzzy inference engine to support decision making in various situation. Our experimentation describes situation of the virtual battlefield between the NPCs, which are divided two groups, such as fuzzy rule based agent and automata based agent. We calculate the percentage of winning and survival rate from the several simulations, and the result describes that the fuzzy rule based agent showed better performance than the automata based agent.

A Study of the UML modeling and simulation for an analysis and design of the reconnaissance UAV system (정찰용 무인기 체계 분석/설계를 위한 UML 모델링 및 시뮬레이션 연구)

  • Kim, Cheong-Young;Park, Young-Keun;Lee, Jun-Kyu;Kim, Myun-Yeol;Reu, Tae-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1112-1120
    • /
    • 2008
  • The real-time distributed simulation at the present age concentrates on the construction of a system development environment in order to accomplish a synthetic battlefield environment connected with Live-Virtual-Constructive simulation and to realize the Simulation Based Acquisition which supports the life cycle of weapon system. Accordingly this paper describes the development environment of the UML modeling and simulation which integrates the system analysis and design methods performed during the conceptual design phase of the reconnaissance UAV system development. An integrated framework linked with the UML simulation and X-plane visualization is suggested to efficiently perform the system analysis and design, and finally the implementation contents, the analysis of experiment results and concluding remarks are described.

The Battle Warship Simulation of Agent-based with Reinforcement and Evolutionary Learning (강화 및 진화 학습 기능을 갖는 에이전트 기반 함정 교전 시뮬레이션)

  • Jung, Chan-Ho;Park, Cheol-Young;Chi, Sung-Do;Kim, Jae-Ick
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.65-73
    • /
    • 2012
  • Due to the development of technology related to a weapon system and the info-communication, the battle system of a warship has to manage many kinds of human intervention tactics according to the complicated battlefield environment. Therefore, many kinds of studies about M&S(Modeling & Simulation) have been carried out recently. The previous M&S system based on an agent, however, has simply used non-flexible(or fixed) tactics. In this paper, we propose an agent modeling methodology which has reinforcement learning function for spontaneous(active) reaction and generation evolution learning Function using Genetic Algorithm for more proper reaction for warship battle. We experiment with virtual 1:1 warship combat simulation on the west sea so as to test validity of our proposed methodology. We consequently show the possibility of both reinforcement and evolution learning in a warship battle.

A Study on the Battle Management Language Application for the C4I and M&S Interoperation in ROK Forces (한국군에서의 C4I체계와 M&S 상호운용을 위한 BML 적용에 관한 연구)

  • Jung, Whan-Sik;Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.91-101
    • /
    • 2010
  • Battle Management Language (BML) is defined as an unambiguous language intended to provide for command and control of simulated and live forces in U.S. It has been developed to connect between command and control system and Modeling & Simulation in the U.S., including NATO M&S Working Group. Its goal is to provide situational awareness and offer a path forward for interoperation of C2 systems and simulations. This study deals with BML development in U.S. that begins from army and is being expanded in multinational environment. It also proposes the BML application for C4I and M&S interoperation in the Korean forces. Recent developments of BML in U.S. have shown the potential for interoperation between C2 systems and simulations in a coalition environment. Finally, this study proposes a general BML application method and shows the example of its application to the Korea Joint Command Control System (KJCCS). It provides an architecture and a milestone for BML application in the Korean forces.

Network Traffic Control for War-game Simulation in Distributed Computing Environment (분산 컴퓨팅 환경에서의 워게임 시뮬레이션을 위한 네트워크 트래픽 제어)

  • Jang, Sung-Ho;Kim, Tae-Young;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • The distributed war-game simulation system has been used to represent the virtual battlefield environment. In order to produce a simulation result, simulators connected from a network transfer messages with location information of simulated objects to a central simulation server. This network traffic is an immediate cause of system performance degradation. Therefore, the paper proposes a system to manage and control network traffic generated from distributed war-game simulation. The proposed system determines the moving distance of simulated objects and filters location messages by a distance threshold which is controlled according to system conditions like network traffic and location error. And, the system predicts the next location of simulated objects to minimize location error caused by message filtering. Experimental results demonstrate that the proposed system is effective to control the network traffic of distributed war-game simulation systems and reduce the location error of simulated objects.

A Study for Autonomous Intelligence of Computer-Generated Forces (가상군(Computer-Generated Forces)의 자율지능화 방안 연구)

  • Han, Chang-Hee;Cho, Jun-Ho;Lee, Sung-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • Modeling and Simulation(M&S) technology gets an attention from various parts such as industry and military. Especially, military uses the technology to cope with a different situation from the one in the Cold War and maximize the effect of training against the cost in the new environment. In order for the training based on M&S technology to be effective, the situations of a battlefield and a combat must be more realistically simulated. For this, a technique development on Computer-Generated Forces(CGF) which represents a unit's simulation logic and a human's simulated behaviors is focused. The CGF simulating a human's behaviors can be used in representing an enemy force, experimenting behaviors in a future war, and developing a new combat idea. This paper describes a methodology to accomplish Computer-Generated Forces' autonomous intelligence. It explains the process of applying a task behavior list based on the METT+T element onto CGFs. On the other hand, in the domain knowledge of military field manual, fuzzy facts such as "fast" and "sufficient" whose real values should be decided by domain experts can be easily found. In order to efficiently implement military simulation logics involved with such subjectivity, using a fuzzy inference methodology can be effective. In this study, a fuzzy inference methodology is also applied.

Monte Carlo Simulation based Optimal Aiming Point Computation Against Multiple Soft Targets on Ground (몬테칼로 시뮬레이션 기반의 다수 지상 연성표적에 대한 최적 조준점 산출)

  • Kim, Jong-Hwan;Ahn, Nam-Su
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.47-55
    • /
    • 2020
  • This paper presents a real-time autonomous computation of shot numbers and aiming points against multiple soft targets on grounds by applying an unsupervised learning, k-mean clustering and Monte carlo simulation. For this computation, a 100 × 200 square meters size of virtual battlefield is created where an augmented enemy infantry platoon unit attacks, defences, and is scatted, and a virtual weapon with a lethal range of 15m is modeled. In order to determine damage types of the enemy unit: no damage, light wound, heavy wound and death, Monte carlo simulation is performed to apply the Carlton damage function for the damage effect of the soft targets. In addition, in order to achieve the damage effectiveness of the enemy units in line with the commander's intention, the optimal shot numbers and aiming point locations are calculated in less than 0.4 seconds by applying the k-mean clustering and repetitive Monte carlo simulation. It is hoped that this study will help to develop a system that reduces the decision time for 'detection-decision-shoot' process in battalion-scaled combat units operating Dronebot combat system.

A Study on Effectiveness Analysis Methods for V-C System: Applying Effective Based Operation (EBO) Methodology (효과기반 작전 방법론을 적용한 V-C 연동체계에서 전투효과 분석방법 연구)

  • Kim, Young-In;Hong, Yoon-Gee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1337-1345
    • /
    • 2012
  • The principle of Effective Based Operation applied to the Korean Theater resulted in measurable effects to win the minimum battle. Based on the finding, this study recommends the effect analysis methodology under the V-C interoperability system to acquire a weapon system. This method is followed as below; to confirm the effect data on the organized weapon system, to set MOE, MOP and effect considering the purpose of the analysis, to apply the appropriate operational concept and scenario on the weapon system, and then the available C Model is after action reviewed, adjusted, and given feedback. The V-C interoperability system enables to perform the real-time combat experiment under the virtual synthesized battlefield circumstances. The defensive battle organization and displacement of the future anti-tank guided weapon system was considered in the modeling process. Scenario was written, which encompasses company-level units and the battalion-level operation. Then the available AWAM was embodied and effect-analyzed, which formed the foundation of SBA.