• Title/Summary/Keyword: 가상음속

Search Result 10, Processing Time 0.022 seconds

Application of Preconditioning to Navier-Stokes Equations (예조건화 방법론의 Navier-Stokes 방정식에의 적용)

  • 이상현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.16-26
    • /
    • 2004
  • The objective of this study is to apply preconditioning to Wavier-Stokes equations with a turbulence model. The concept of a pseudo sonic speed was adopted. Roe's FDS was used for spatial discretization, LU-SGS scheme was used for time integration. In order to test the algorithms, the low speed flows around NACA airfoils and the flows through supersonic nozzle were calculated. The algorithm developed in the present study shows good performance in the calculations of low speed viscous flows and supersonics flows.

A Time-Derivative Preconditioning Method for Compressible Flows at All Speeds (Preconditioning을 이용한 전속도 영역에 대한 압축성 유체유동해석)

  • 최윤호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1840-1850
    • /
    • 1994
  • Enhancement of numerical algorithms for low speed compressible flow will be considered. Contemporary time-marching algorithm has been widely accepted and applied as the method of choice for transonic, supersonic and hypersonic flows. In the low Mach number regime, time-marching algorithms do not fare as well. When the velocity is small, eigenvalues of the system of compressible equations differ widely so that the system becomes very stiff and the convergence becomes very slow. This characteristic can lead to difficulties in computations of many practical engineering problems. In the present approach, the time-derivative preconditioning method will be used to control the eigenvalue stiffness and to extend computational capabilities over a wide range of flow conditions (from very low Mach number to supersonic flow). Computational capabilities of the above algorithm will be demonstrated through computation of a variety of practical engineering problems.

Performance Design of a Dual Mode Ramjet Engine (초음속에서 극초음속까지 비행을 위한 이중모드 램제트엔진의 성능 설계)

  • Choe, Se-Young;Yeom, Hyo-Won;Kim, Sun-Kyoung;Sung, Hong-Gye;Byun, Jong-Ryul;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.289-292
    • /
    • 2007
  • Performance of a dual mode ramjet engine based on the sensitivity analysis of design parameters (the gap between cowl and inlet spike and combustor length) was analyzed from the view points of aerodynamics and thermodynamics. A dual mode engine performing from supersonic to hypersonic (Mach no. 2 to 6) was designed in a proposed flight envelop. The design method and result were comparable to the results of the previous study, Hyperion RLV, and the CFD calculation.

  • PDF

Feasibility of Ocean Survey by using Ocean Acoustic Tomography in southwestern part of the East Sea (동해 남서해역에서 해양음향 토모그래피 운용에 의한 해양탐사 가능성)

  • Han, Sang-Kyu;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.75-82
    • /
    • 1994
  • The ray paths and travel times of sound wave in the ocean depend on the physical properties of the propagating media. Ocean Acoustic Tomography(OAT), which is inversely estimate the travel time variations between fixed sources and receivers the physical properties of the corresponding media can he understood. To apply ocean survey technology by using the OAT, the tomographic procedure requires forward problem that variation of the travel times be identified with the variability of the medium. Also, received signals must be satisfied the necessary conditions of ray path stability, identification and resolution in order for OAT to work. The canonical ocean has been determined based on the historical data and its travel time and ray path are used as reference values. The sound speed of canonical ocean in the East Sea is about 1523 m/s at the surface and 1458 m/s at the sound channel axis(400m). Sound speeds in the East Sea are perturbed by warm eddy whose horizontal extension is more than 100 km with deeper than 200 m in depth scale. In this study, an acoustic source and receiver are placed at the depth above the sound channel axis, 350 m, and are separated by 200 km range. Ray paths are identified by the ray theory methed in a range dependent medium whose sound speeds are functions of a range and depth. The eigenray information obtained from interpolation between the rays bracketing the receiver are used to simulate the received signal by convolution of source signal with the eigenray informations. The source signal is taken as a 400 Hz rectangular pulse signal, bandwidth is 16 Hz and pulse length is 64 ms. According to the analysis of the received signal and identified ray path by using numerical model of underwater sound propagation, simulated signals satisfy the necessary conditions of OAT, applied in the East Sea.

  • PDF

TBCC Engine Performance Design Technique of Reusable Launch Vehicle (재사용 우주 발사체의 TBCC 엔진 성능 설계 기법)

  • Kim, Sung-Jin;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.167-170
    • /
    • 2008
  • A TBCC(Turbine Based Combined Cycle) engine performance design method for reusable launch vehicles flying both in subsonic and supersonic regime was proposed. The TBCC consists of turbo jet engines and ramjet engines, operating individually or together according to operation schedule. The performance scheme of turbojet and ramjet was validated and the combined engine performance of the TBCC at a typical flight condition was analyzed.

  • PDF

Nonlinear Aeroelastic Analysis of a Wing with Control Surface Freeplay in Subsonic/Transonic Regions (조종면 유격이 있는 날개의 아음속 및 천음속에서의 비선형 공탄성 해석)

  • Kim, Kyung-Seok;Kim, Jong-Yun;Yoo, Jae-Han;Bae, Jae-Sung;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-301
    • /
    • 2007
  • The aeroelastic characteristics of a wing with control surface freeplay are investigated. The transonic small disturbance equation is used for unsteady aerodynamic forces in subsonic/transonic region. The fictitious mass method is introduced to apply a modal approach to nonlinear structural models. Nonlinear aeroelastic time responses are calculated by the coupled time integration method. Using these methods, an efficient aeroelastic analysis is achieved for aerodynamic and structural nonlinearities simultaneously. The effects of the aerodynamic nonlinearity, initial flap amplitude, and freeplay magnitude in aeroelastic characteristics are investigated in this study.

Computation of Flowfield and Infrared Signature in Aircraft Exhaust System for IR Reduction Design (항공기 후방동체 열유동장 및 IR 신호 예측 시스템)

  • Moon, Hyuk;Yang, Young-Rok;Chun, Soo-Hwan;Choi, Seong-Man;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.652-659
    • /
    • 2011
  • A computational system to predict flowfield and infrared signature in aircraft exhaust system is developed. As the first step, a virtual mission profile is considered and an engine is selected through a performance analysis. Then a nozzle that meets the requirement of each mission is designed. The internal flow in the exhaustion nozzle at the maximum thrust is analyzed using a state-of-the-art CFD code. In addition, a system to combine information of the skin temperature distribution of the nozzle and after-body surface with an infrared prediction code is developed. Finally, qualitative results for the infrared signature reduction design are obtained by investigating the infrared signature level under various conditions.

Computational Investigation of the Effect of Various Flight Conditions on Plume Infrared Signature (항공기 비행환경에 따른 플룸 IR 신호 영향성 연구)

  • Kim, Joon-Young;Chun, Soo-Hwan;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.185-193
    • /
    • 2013
  • The plume infrared signature effects at various flight conditions of aircraft were investigated for the purpose of reducing infrared signature level. The nozzle of a virtual subsonic unmanned combat aerial vehicle was designed through a performance analysis. Nozzle and associated plume flowfields were first analyzed using a density-based CFD code and plume IR signature was then calculated on the basis of the narrow-band model. Finally, qualitative information for the plume infrared signature characteristics was obtained through the analysis of the IR signature effects at various flight conditions.

Computational Investigation of the Effect of UAV Engine Nozzle Configuration on Infrared Signature (무인항공기 노즐 형상 변화에 따른 IR 신호 영향성 연구)

  • Kang, Dong-Woo;Kim, June-Young;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.779-787
    • /
    • 2013
  • The effects of various nozzle configurations on infrared signature are investigated for the purpose of analysing the infrared signature level of aircraft propulsion system. A virtual subsonic aircraft is selected and then a circular convergent nozzle, which meets the mission requirements, is designed. Convergent nozzles of different configurations are designed with different geometric profiles. Using a compressible Navier-Stokes-Fourier CFD code, an analysis of thermal flow field and nozzle surface temperature distribution is conducted. From the information of plume flow field and nozzle surface temperature distribution, IR signature of plume and nozzle surface is calculated through the narrow-band model and the RadThermIR code. Finally, qualitative information for IR signature reduction is obtained through the analysis of the effects of various nozzle configurations on IR signature.

Investigation of the Effects of UAV Nozzle Configurations on Aircraft Lock-on Range (무인항공기의 노즐 형상 변화가 Lock-on Range에 미치는 영향에 관한 연구)

  • Kim, Min-Jun;Kang, Dong-Woo;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.204-212
    • /
    • 2015
  • The infrared lock-on range of target aircraft plays a critical role in determining the aircraft survivability. In this investigation, the effects of various UAV engine nozzle configurations on the aircraft lock-on range were theoretically analyzed. A virtual subsonic aircraft was proposed first, based on the mission requirement and the engine performance analysis, and convergent-type nozzles were then designed. After determining thermal flow field and nozzle surface temperature distribution with the CFD code, an additional analysis was conducted to predict the IR signature. Also, atmospheric transmissivity for various latitude and seasons was calculated, using the LOWTRAN code. Finally, the lock-on and lethal envelopes were calculated for different nozzle configurations, assuming the sensor threshold of the given IR guided missile. It was shown that the maximum 55.3% reduction in lock-on range is possible for deformed nozzles with the high aspect ratio.