• Title/Summary/Keyword: 가상모멘트

Search Result 27, Processing Time 0.014 seconds

A Study on the Minimum Weight Difference Threshold in a VR Controller with Moment Variation (VR 컨트롤러의 모멘트 변화에 따른 최소 무게 차이 인지에 관한 연구)

  • Baek, Mi-Seon;Kim, Huhn
    • Journal of Korea Game Society
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2020
  • This study is about the VR controller that can provide an enhanced experience in VR by augmenting the sense of weight. In this study, the method of changing the center of gravity of the controller was used as a means of transmitting the sense of weight. The experiment was carried out with a device that could change the center of gravity to find the minimum distance at which people can perceive the difference in weight. The results showed that the weight difference between the two stimuli can be perceived at a distance of about 5 cm regardless of the position of the starting stimulus.

Virtual Brake Pressure Sensor Using Vehicle Yaw Rate Feedback (차량 요레이트 피드백을 통한 가상 제동 압력 센서 개발)

  • You, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.113-120
    • /
    • 2016
  • This paper presents observer-based virtual sensors for YMC(Yaw Moment Control) systems by differential braking. A high-fidelity empirical model of the hydraulic unit in YMC system was developed for a model-based observer design. Optimal, adaptive, and robust observers were then developed and their estimation accuracy and robustness against model uncertainty were investigated via HILS tests. The HILS results indicate that the proposed disturbance attenuation approach indeed exhibits more satisfactory pressure estimation performance than the other approach with admissible degradation against the predefined model disturbance.

A Study on Lateral Torsional Budding of Arch Subjected to Pure Bending Moment (순수 휨모멘트를 받는 아치의 횡좌굴에 관한 연구)

  • Kim, Saeng Bin;Yoo, Chai Hong;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.13-19
    • /
    • 1989
  • A system of coupled differential equations governing the lateral-torsional buckling of thin-walled arches subjected to pure bending moment is presented. The governing differential equations are derived using incremental form of principle of virtual displacement based on updated Lagrangian procedure. The differential equations are solved for the critical end moments of arches with I section, and then comparative studies are made with existing solutions.

  • PDF

Load-Displacement Characteristics and Interactive Load Capacity Model for Metal Plate Connections in Wood(II) - Interactive Load Capacity Model and Experimental Verification - (목재(木材)-금속(金屬)플레이트 접합부(接合部)의 하중(荷重)-변위(變位) 특성(特性) 및 조합하중성능(組合荷重性能)에 대한 모형 분석 (II) - 조합하중모형(組合荷重模型)과 실험적(實驗的) 입증(立證) -)

  • Park, Moon-Jae;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.12-18
    • /
    • 1995
  • 고도(高度)의 엔지니어링 구조물(構造物)로 경제성이 높은 경량(輕量) 목조(木造)트러스에 사용될 수 있는 소나무(Pinus densiflora) 재(材)에 적용한 20게이지 아연도금 강(鋼) 플레이트 접합부(接合部)의 조합하중(組合荷重) 및 모멘트 성능(性能)을 평가하기 위하여 정밀도를 개선(改善)한 편심가력(偏心加力) 장치(裝置)를 창안하여 실험하고 반강절(半剛節) 접합부의 개념(槪念)과 가상(假想)일 법(法)을 적용한 모형을 유도하여 비선형(非線形) 해석(解析)하였다. 반강절(半剛節) 접합부(接合部)의 개념을 도입하여 저자가 유도한 비선형(非線形) 모형으로 조합하중 하에서의 접합부 거동을 해석한 결과, 금속 플레이트 접합부의 모멘트는 Wolfe 모형에 비하여 정확도가 높은 값으로 계산되었는데, 이는 비선형모형에서 접합부의 반강성(半剛性)에 의한 2차적인 모멘트의 영향을 적절히 고려한 때문으로 판단되었다. 본 연구에서 사용한 실험장치는 조합하중에 대한 금속 플레이트 접합부의 성능을 평가하기 위한 표준시험법(標準試驗法)으로 적용될 수 있을 것이며, 비선형(非線形) 해석방법(解析方法)은 조합하중(組合荷重)및 모멘트 성능(性能)을 예측(豫測)하는데 활용될 수 있다.

  • PDF

Moment-Curvature Analysis of Steel Fiber-Reinforced Ultra High Performance Concrete Beams with Tension Softening Behavior (인장연화거동을 고려한 강섬유 보강 초고성능 콘크리트 보의 모멘트-곡률 해석)

  • Yang, In-Hwan;Joh, Chang-Bin;Kim, Byung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.237-248
    • /
    • 2011
  • Tensile softening characteristics play an important role in the structural behavior of steel fiber-reinforced ultra high performance concrete. Tension softening modeling and numerical analysis method are necessary for the prediction of structural performance of steel fiber-reinforced concrete. The numerical method to predict the flexural behavior is proposed in this study. Tension softening modeling is carried out by using crack equation based on fictitious crack and inverse analysis in which load-crack opening displacement relationship is considered. Thereafter material modeling is performed considering tension softening. The comparison of moment-curvature curves of the numerical analysis results with the test results indicates a reasonable agreement. Therefore, the present numerical results prove that good prediction of flexural behavior of steel fiber-reinforced ultra high performance concrete beams can be achieved by employing the proposed method.

A Study of Soil Spring Model Considering the Seismic Load in Response Spectrum Analysis of Pile-Supported Structure (잔교식 말뚝 구조물의 응답스펙트럼해석 시 지진하중을 고려한 지반 스프링 모델 제안)

  • Yun, Jung-Won;Kim, Jongkwan;Lee, Seokhyung;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.5-17
    • /
    • 2022
  • Recently, several studies have been conducted on virtual fixed-point and elastic soil spring methods to simulate the soil-pile interaction in response to spectrum analysis of pile-supported structures. However, the soil spring stiffness has not been properly considered due to the seismic load magnitude, and studies on the response spectrum analysis of pile-supported structures considering this circumstance are inadequate. Therefore, in this study, the response spectrum analysis was performed considering the soil spring stiffness according to the seismic load magnitude, and the dynamic behavior of the pile-supported structure was evaluated by comparing it with existing virtual fixed-point and elastic soil spring methods. Comparing the experiment and analysis, the moment differences occurred up to 117% and 21% in the virtual fixed-point and elastic soil spring models, respectively. Moreover, when the analysis was performed using an API p-y curve considering the soil spring stiffness according to the seismic load magnitude, the moment difference between the experiment and analysis was derived at a maximum of < 4%, and it is the most accurate method to simulate the experimental model response.

Simplified Bending Moment Analysis in Slab Bridges supported by Column Type Piers (기둥으로 지지된 슬래브교(橋)의 모멘트 산정(算定)에 관한 연구(硏究))

  • Kim, Young Ihn;Lee, Chae Gyu;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.17-24
    • /
    • 1992
  • It would be much effective that single column type pier is used in concrete slab bridges rather than ${\Pi}$ or gravity type pire is used. To determine the longitudinal benging moment in concrete slab bridges supported by single column type piers, the concept of effective width is applied. By elastic plate theory cooperated with finite element method, the distribution of the longitudinal moment of the slab supported by single column type piers is studied. The main variables are span, width. thickness of the slab, and column section size. The analytical results obtained are summarized and analysed to evaluate the maximum longitudinal negative moment, then a simplified method for calculating the longitudinal moment is proposed.

  • PDF

Effective Length Factors for Continuous Compression Members (연속 압축재의 유효길이 계수)

  • Choi, An-Ki;Song, Sang-Yong;Lee, Soo-Gon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.219-226
    • /
    • 2003
  • 보 유사법을 이용하여 연속 압축재의 유효길이 계수를 각 경간별로 결정하는 방법을 제안한다. 제안하는 보 유사법은 4가지 단계로 요약할수 있는데 그 첫 단계는 주어진 압축재를 이것과 동일한 단면성능 및 경간을 갖는 연속보로 치환하는 것이다. 제 2단계에서는 연속보 각 경간의 중앙에 가상 집중 횡하중을 작용시킨 후 이로 인한 지점들에서의 재단 moment를 계산한다. 이때 각 경간중앙의 가상 집중 횡하중 방향은 좌굴 mode를 고려하여 교호로 바뀌도록 한다. 제 3단계에서는 또 하나의 제안식과 재단 모멘트를 이용하여 Kinney의 부분 고정도를 결정한다. 최종단계에서는 부분 고정도를 이용하여 유효길이를 각 경간별로 산정 한다. 제안한 방법은 다 경간 압축재에서 어느 경간이 맨 먼저 좌굴을 일으키는지 또한 이때의 임계하중은 어떤 값을 갖는지를 예측하게 한다.

  • PDF

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-256
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Dynamic Response and Control of Airship with Gust (외란이 작용하는 비행선의 동적 반응 및 제어)

  • Woo, G.A.;Park, I.H.;Oh, S.J.;Cho, K.R.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.69-77
    • /
    • 2002
  • To acquire the dynamic response and design the controller of the airship, the longitudinal motion of the airship with respect to the vertical gust, which is the nonlinear system, was studied. The effects of the apparent mass and moment of the airship delay the dynamic response and the settling time, which are slower than those of conventional airplanes. The current object of the airship is designed to cruise at 500~1000m altitude. At that height, the atmospheric conditions are generally unstable by wind gust. In this paper, it has been studied for the case of vertical gust, since the apparent mass effects are dominant in has been studied for the case of vertical gust, since the apparent mass effects are dominant in that plane. In addition to the study of the dynamic responses of the airship, the controller was designed using the PID-controller. When the gust was applied, airship responses were recovered of equilibrium states. However, it takes too ling time for recovery and the speed of airship is reduced. So, the aim in this paper was to fasten the recovery speed and to get back the cruising velocity. The control parameters were determined from the stability mode analysis, and the control inputs were the thrust and the elevator deflection angle.