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Effective Length Factors for Continuous Compression Members
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1. introduction

The elastic critical load of a compression member is the most important factor to be considered in the
structural design of that member. The critical load is usually expressed as a function of the effective
length factor. The effective length factors (or K-factors) for a single span compression member with
arbitrary loading and boundary conditions can be determined by analytical or numerical methods. For
framed columns, the so-called alignment chart of AISC manual are commonly utilized for the
determination of K-factors.

In the case of a continuous compression member, however, the critical load is difficult to determine.
Furthermore, ti is not possible to predict the span that buckles first(or the span that governs the
stability of the whole member). The difficulties compoynd with increasing numbers of span, as well as
with different loading condition for each span. The sectional property change of each span makes the
critical load determination more difficult. Structural engineers who are accustomed to the effective length

factor concept have no means to determine the X-factor.
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In this paper, beam-analogy method is proposed for an easy determination of the effective length
factor for each span of a continuous compression member. It can also predict the critical span that
buckles first. The proposed method reveals near-exact critical load for any type of continuous

compression member.

2. Beam-analogy method

The proposed method for the determination of the effective legnth factors of a continuous compression
member can be divided into four steps, which is to be illustrated with a two-span continuous member in
Fig. 1. The first step of the method is to replace the continuous compression member by a continuous
beam with the same span lengths and sectional properties as shown in Fig. 2(a). Along this beam, a
virtual concentrated load af each midspan is made to change its direction to simulate the buckling mode.
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Fig. 2(a) A continuous beam

16.875

11.875 3.750
A 9 B/ 111 IE/IEMC
W

64=16.250, 85=—1.500, 0c=9.375

Fig. 2(b) BMD ( x QL/40) and rotation angles ( x QL%/80ED
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Fig. 2(c) Fixity factors and critical loads

Fig. 2 An analogous beam

The second step is the structural analysis of the continuous beam in order to obtain the end moments
and rotation angles at the supports. Stress analysis can be performed by any of several methods, among
which the analysis results by the conventional slope-deflection method are shown in Fig.2 (b).

The third step is to determine the Kinney's fixity factors at the midsupports by using the following

equation.
(M= (B L w
In the above, | | denotes absolute value and Kinney's fixity, f,z is zero ( f,3=0.0) when the

member end is simply supported and unity ( f,z=1.0) when the end is completely fixed. When Eq.(1)

is applied to midsupport, B of Fig. 2(b), one obtains

375 _4AEI _ fra  1.50QL*

375 4EI . _ fec | 1.50QL® _
QL="T5L " 1= fpe =~ 8EI = fac=0.213

The fixity factors at the exterior supports are zero ( f 3= fcp=0.0) by the definition of fixity factor.

The last step is the determination of the effective length factor of each span by using the following
relationship;

(B)og= ((1+fu9) + (14 fa))7%° 2
When the above effective length factor is introduced, the critical load is expressed by
_(_ 7B\ _ . . of EI
(Pou=(-Gepyr) = U+t Ut fo) - 2(-H) @

When Eq. (2) and (3) are applied to the present problem, the critical load and K-factor for each span
are given by
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- . ~05 _ __ nEl_ _ EI
(K) ap=((140.0) - (1+0.2)) 0.913, (P.)as= (0.913L)° =11.840 2

- . -0.5 _ - zEl — El
(K) 45=((140.273) - (140.0)) 0.886, (P.,) sc (0856 %1.50) =5.588 7T @

From the above calculation, one can see that span BC governs the stability of the member. Fig.l is the
very example chosen by Chen’s Structural stability textbook, where the neutral equilibrium method was

applied to obtain P.=5.890EI/L?. When this is compared with Eq(4), an error of —5.2% is

observed.

3. Comparisons of the critical loads

The critical load for the framed columns as well as the continuous compression members can be

determined by the modified slope-deflection method. When axial force P is included in the derivation of
the slope-deflection equations, one can obtain;

—(EI\ .
Maﬂ—( - )aﬂ (@n0a+ a05) 5. a)
M= (—lz—f)aﬂ- (af4+ a,05) 5. b)

where the coefficients, @, and @y of the rotation angles €4 and @p are so—called Merchants's
stability functions defined by;
an ¢f

=" 7, = 6. a, b)
o~ 0 " 0o/ :
with
kL =V PL*/EI
1 - 1 _
o, (RL)? (1—FkLcotkL), O (RL)? (kL csckL—1) (7. a, b)

The successive application of Eq.(5) to the continuous member of Fig. 1, the enforcement of boundary
conditions at exterior ends and applying moment equilibrium condition at midsupport yield the following
matrix equation;

a, ar 0 84 0
ay (a,,+a,,1/1.5) aﬂ/1.5 = 03 =0 } 8)
0 ap (/5] 0C 0

The above equation yields the following characteristic equation (a,, and an are related to
le’: 1.5%L)

ay af 0
det| a; (a,+tan,/1.5) aa/1.5(=0
0 ap ay

or when expanded
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a, a
The least root satisfying above equation can be found by the trial and error technique, which yields

kL =92.4265 and P, =5.888EI/L?. Note that the value 5.888 coincides with Chen's result.

Nowadays numerical methods are more common for the solution of engineering problems. For example,
the finite difference or finite element method can be used for the stability analysis of continuous
members. In this study, the critical loads were also determined by the finite element method and Eq.

(10) shows the element matrices.

[kl =[kJ—[k] (10)
i 12 ) symm
[%£,] (=flexural stiffness matrix)= ~——13Lel :?21 4611 19 (10.a)
—61 2 61 4F
36 symm
P |-31 4F (10b)

[ k,] (=geometric stiffness matrix)= 07| —36 3 36
—-31 —F 31 4P
Above equations are derived by equating the flexural strain energy of the linear element having two
degrees of freedom at each node to the work done by the constant axial P. As far as the final analysis
results are concemned, the critical loads by the finite element method coincide with those determined by
the modified slope-deflection method when the member is subdivided into finer elements.

4. Hustrative example

For a better understanding of the proposed method, another continuous compression member shown in
Fig. 3(a), has been chosen. Fig. 3(b) shows the corresponding analogous beam. For the boundary

conditions of the exterior ends, A and FE, the following combinations are considered

@ simple - simple ( f45=0.0, fep=0.0) @ simple - fixed (fap=0.0, fep=1.0)
B fixed - simple ( fap=1.0, fep=0.0) @ fixed - fixed (fa5=1.0, fep=1.0)
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(a) Continuous compression member
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(b) Continuous beam under virtual loads
Fig. 3 Four-span continuous member

The stress analysis resuits for each boundary condition are summarized in Table (1). In the table, the
coefficient, ¢ for M, (a= A, B,*+-, E) denotes the absolute value of end moment.

Table 1. Rotation angles and absolute end moment coefficients of analogous beam
8,=C,- QL*/8EI, M,=C, - QL/8

a4 0B Oc Op O My Mg Mc Mp Mg
® s-s 0951 | -0.777 | 0590 | -0.533 | 0516 0.0 2.784 0.588 0.096 0.0
@ S-F 0948 | -0.771 | 0569 | -0.440 0.0 0.0 2832 | 079 | 0.756 | 1.8%0
@ F-S 0.0 -0.532 | 0510 | -0.504 | 0.502 8.837 0.325 | 0.068 | 0.010 0.0
@ F-F 0.0 -0.527 | 0.491 | -0.414 0.0 8.106 0379 | 0272 | 0654 | 1.827

Table 2. Fixity factors at the member supports

) =(HEL) e oy

L —fap
A B C D E
faB fBa Jec fes fep foc JoE JED
@ S-S 0.0 0.251 0.230 0.076 0.111 0.022 0.043 0.0
@ S-F 0.0 0.256 0.234 0.104 0.149 0.177 0.300 1.0
@ F-S 1.0 0.04 0.048 0.011 0.016 0.002 0.005 0.0
@ F-F 1.0 0.063 0.056 0.044 0.065 0.165 0.283 1.0

Table 3. Elastic critical load coefficient, C s for the member

(Po) =+ £ 1+ f ) ) EI=C - f{
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Each span as an isolated member system as SsDM | FEM | errorcce)
AB BC CD DE a whole
(@ S-S 5.487 13.062 11.206 10.294 5.487 5.858 5858 -6.3
@ S-F 5.509 13.445 13.347 25.661 5509 5.875 5875 -6.2
@ F-S 9.247 10457 10.457 9.919 9.247 9.484 9.484 -25
I @ F-F 9.325 10.881 12.245 25.325 9.325 9.737 9.737 -42

Table (2) shows the Kinney's fixity factor determined by Eq. (2). For example f4p and fgo for the
first case of boundary conditions (D S-S) are determined in the following way (see Table. (1));
2

8 ~ 15L  1—fm  8EI v Jfa=0.20l
. QL _ Ax3EI _ fac  0.777QL* .
2.184 - 4k = AX3 T TOL- | fae=0.230

The critical load of each span as an isolated member is determined by using Eq. (3). For example if
one choose span AB and BC for boundary conditions (@F-F), one obtains;

(4P,) —(10+10)<10+1063>( z )2-(4EI) > (P,),. =9.305-EL
7. AB_ . . . . 1,5L CrAB—- . Lz

2
(3P0 po=(1.06)(L.0M)(-F ) - BED = (Po),=10.88124

Among the loads for several spans, the least value is the very critical load that governs the stability of
the given continuous member. The span AB governs the stability of the member for all cases of the
boundary conditions. In the table, columns SDM and FEM denote critical loads determined by the
modified slope-deflection and finite element method, respectively. It is observed that both methods yield
the same critical load coefficient. It should also be noted that the proposed method gives lower bound
errors for all cases of the boundary conditions, which proves the validity of applying the proposed
methods to practical structural design. The present study focuses on the K -factors for the continuous
member of Fig. 3, which are easily obtained from Table 2. The final results are summarized in Table 4.

Table 4. K-factors for each span

PAW AB BC CD DE

S=S | f45=0.0, fp4=0.251|0.894| fpc=0.230, fcp-0.076{0869| Fep=0.111, fpe=0.022| 0.938 | Fps=0.043, f£p=0.0| 0.979
S-F | f4p=0.0, fp4=0.256/0.892| fpc=0.234, fcp=0.104| 0857 | Fcp=0.149, fpc=0.177| 0.860 | fpr=0.300, frp=1.0|0.620
F-S | £ap=10, f54=0.054|0.689| f5c=0.048, fcp=0.011{0971 | fp=0.016, fpc=0.002| 0.991 | fpe=0.005, f£p=0.0|0.997
F-F | fap=10. fpa=0.063{0.686| fpc=0.056, fcp=0.044]0952| fcp=0.065, fpc=0.165| 0.898 | fps=0.283, frp=1.0|0.624
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As can be seen in Table (5), however, the stability governing span can be different if the stability
governing parameters are changed.
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Table 5. Critical load coefficients, C s four-span continuous member ( P, = CEI/L?

BC SDM | FEM | Proposed |error(%)
P P P F4=0.0/F=0.0| 9869 | 9.869 |986%(ALL)| 00
2P A Rl e hl) E| P
P 8w & o & om ] fa=0.0/ fz=1.0{ 10213 | 10213 | 9933(AB) | -27
}‘— L -——+— L —+——L —-+—L

fa=1.0/f£=0.0| 11.244 { 11.244 | 10.136(DE) | -9.8
fa=1.0/fe=1.0| 12613 | 12613 { 11.78/CD) | -66

In the fourth column, the proposed method, (ALL) denotes the simultaneous buckling of all spans while
(CD) indicates that the span CD governs the stability of the whole member.

5. Conclusions

A new method using the Kinney’'s fixity factors at the member supports has been developed for the
determination of the effective length factors of continuous (or multi-span) compression members. The
fixity factors are determined by using the stress analysis results of a continuous beam having the same
dimensions as the compression member and is subjected to a lateral concentrated load at the center of
each span. The analysis results of the continuous compression member by the proposed method lead to
the following conclusions:

+ The effective length factor and critical load of each span as an isolated member are easy to
determine,

* Prediction of the span that buckles first under any loading and boundary conditions is possible.

» The critical load governing the stability of the continuous compression member as a whole is less
(max 10%) than that determined by other methods.
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