• Title/Summary/Keyword: 가변 결정 알고리즘

Search Result 93, Processing Time 0.021 seconds

Estimation of River Flow Data Using Machine Learning (머신러닝 기법을 이용한 유량 자료 생산 방법)

  • Kang, Noel;Lee, Ji Hun;Lee, Jung Hoon;Lee, Chungdae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.261-261
    • /
    • 2020
  • 물관리의 기본이 되는 연속적인 유량 자료 확보를 위해서는 정확도 높은 수위-유량 관계 곡선식 개발이 필수적이다. 수위-유량 관계곡선식은 모든 수문시설 설계의 기초가 되며 홍수, 가뭄 등 물재해 대응을 위해서도 중요한 의미를 가지고 있다. 그러나 일반적으로 유량 측정은 많은 비용과 시간이 들고, 식생성장, 단면변화 등의 통제특성(control)이 변함에 따라 구간분리, 기간분리와 같은 비선형적인 양상이 나타나 자료 해석에 어려움이 존재한다. 특히, 국내 하천의 경우 자연적 및 인위적인 환경 변화가 다양하여 지점 및 기간에 따라 세밀한 분석이 요구된다. 머신러닝(Machine Learning)이란 데이터를 통해 컴퓨터가 스스로 학습하여 모델을 구축하고 성능을 향상시키는 일련의 과정을 뜻한다. 기존의 수위-유량 관계곡선식은 개발자의 판단에 의해 데이터의 종류와 기간 등을 설정하여 회귀식의 파라미터를 산출한다면, 머신러닝은 유효한 전체 데이터를 이용해 스스로 학습하여 자료 간 상관성을 찾아내 모델을 구축하고 성능을 지속적으로 향상 시킬 수 있다. 머신러닝은 충분한 수문자료가 확보되었다는 전제 하에 복잡하고 가변적인 수자원 환경을 반영하여 유량 추정의 정확도를 지속적으로 향상시킬 수 있다는 이점을 가지고 있다. 본 연구는 머신러닝의 대표적인 알고리즘들을 활용하여 유량을 추정하는 모델을 구축하고 성능을 비교·분석하였다. 대상지역은 안정적인 수량을 확보하고 있는 한강수계의 거운교 지점이며, 사용자료는 2010~2018년의 시간, 수위, 유량, 수면폭 등 이다. 프로그램은 파이썬을 기반으로 한 머신러닝 라이브러리인 사이킷런(sklearn)을 사용하였고 알고리즘은 랜덤포레스트 회귀, 의사결정트리, KNN(K-Nearest Neighbor), rgboost을 적용하였다. 학습(train) 데이터는 입력자료 종류별로 조합하여 6개의 세트로 구분하여 모델을 구축하였고, 이를 적용해 검증(test) 데이터를 RMSE(Roog Mean Square Error)로 평가하였다. 그 결과 모델 및 입력 자료의 조합에 따라 3.67~171.46로 다소 넓은 범위의 값이 도출되었다. 그 중 가장 우수한 유형은 수위, 연도, 수면폭 3개의 입력자료를 조합하여 랜덤포레스트 회귀 모델에 적용한 경우이다. 비교를 위해 동일한 검증 데이터를 한국수문조사연보(2018년) 내거운교 지점의 수위별 수위-유량 곡선식을 이용해 유량을 추정한 결과 RMSE가 3.76이 산출되어, 머신러닝이 세분화된 수위-유량 곡선식과 비슷한 수준까지 성능을 내는 것으로 확인되었다. 본 연구는 양질의 유량자료 생산을 위해 기 구축된 수문자료를 기반으로 머신러닝 기법의 적용 가능성을 검토한 기초 연구로써, 국내 효율적인 수문자료 측정 및 수위-유량 곡선 산출에 도움이 될 수 있을 것으로 판단된다. 향후 수자원 환경 및 통제특성에 영향을 미치는 다양한 영향변수를 파악하기 위해 기상자료, 취수량 등의 입력 자료를 적용할 필요가 있으며, 머신러닝 내 비지도학습인 딥러닝과 같은 보다 정교한 모델에 대한 추가적인 연구도 수행되어야 할 것이다.

  • PDF

Comparisons between the Two Dose Profiles Extracted from Leksell GammaPlan and Calculated by Variable Ellipsoid Modeling Technique (렉셀 감마플랜(LGP)에서 추출된 선량 분포와 가변 타원체 모형화기술(VEMT)에 의해 계산된 선량 분포 사이의 비교)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A high degree of precision and accuracy in Gamma Knife Radiosurgery(GKRS) is a fundamental requirement for therapeutical success. Elaborate radiation delivery and dose gradients with the steep fall-off of radiation are clinically applied thus necessitating a dedicated Quality Assurance(QA) program in order to guarantee dosimetric and geometric accuracy and reduce all the risk factors that can occur in GKRS. In this study, as a part of QA we verified the accuracy of single-shot dose profiles used in the algorithm of Gamma Knife Perfexion(PFX) treatment planning system employing Variable Ellipsoid Modeling Technique(VEMT). We evaluated the dose distributions of single-shots in a spherical ABC phantom with diameter 160 mm on Gamma Knife PFX. The single-shots were directed to the center of ABC phantom. Collimating configurations of 4, 8, and 16 mm sizes along x, y, and z axes were studied. Gamma Knife PFX treatment planning system being used in GKRS is called Leksell GammaPlan(LGP) ver 10.1.1. From the verification like this, the accuracy of GKRS will be doubled. Then the clinical application must be finally performed based on precision and accuracy of GKRS. Specifically the width at the 50% isodose level, that is, Full-Width-of-Half-Maximum(FWHM) was verified under such conditions that a patient's head is simulated as a sphere with diameter 160mm. All the data about dose profiles along x, y, and z axes predicted through VEMT were excellently consistent with dose profiles from LGP within specifications(${\leq}1mm$ at 50% isodose level) except for a little difference of FWHM and PENUMBRA(isodose level: 20%~80%) along z axis for 4 mm and 8mm collimating configurations. The maximum discrepancy of FWHM was less than 2.3% at all collimating configurations. The maximum discrepancy of PENUMBRA was given for the 8 mm collimator along z axis. The difference of FWHM and PENUMBRA in the dose distributions obtained with VEMT and LGP is too small to give the clinical significance in GKRS. The results of this study are considered as a reference for medical physicists involved in GKRS in the whole world. Therefore we can work to confirm the validity of dose distributions for all collimating configurations determined through the regular preventative maintenance program using the independent verification method VEMT for the results of LGP and clinically assure the perfect treatment for patients of GKRS. Thus the use of VEMT is expected that it will be a part of QA that can verify and operate the system safely.

A Hybrid Knowledge Representation Method for Pedagogical Content Knowledge (교수내용지식을 위한 하이브리드 지식 표현 기법)

  • Kim, Yong-Beom;Oh, Pill-Wo;Kim, Yung-Sik
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.4
    • /
    • pp.369-386
    • /
    • 2005
  • Although Intelligent Tutoring System(ITS) offers individualized learning environment that overcome limited function of existent CAI, and consider many learners' variable, there is little development to be using at the sites of schools because of inefficiency of investment and absence of pedagogical content knowledge representation techniques. To solve these problem, we should study a method, which represents knowledge for ITS, and which reuses knowledge base. On the pedagogical content knowledge, the knowledge in education differs from knowledge in a general sense. In this paper, we shall primarily address the multi-complex structure of knowledge and explanation of learning vein using multi-complex structure. Multi-Complex, which is organized into nodes, clusters and uses by knowledge base. In addition, it grows a adaptive knowledge base by self-learning. Therefore, in this paper, we propose the 'Extended Neural Logic Network(X-Neuronet)', which is based on Neural Logic Network with logical inference and topological inflexibility in cognition structure, and includes pedagogical content knowledge and object-oriented conception, verify validity. X-Neuronet defines that a knowledge is directive combination with inertia and weights, and offers basic conceptions for expression, logic operator for operation and processing, node value and connection weight, propagation rule, learning algorithm.

  • PDF