• Title/Summary/Keyword: 가변장부호화

Search Result 2, Processing Time 0.014 seconds

Adaptive Quantization of Difference Wavelet Image for Close-Range Low-Bitrate Transmission (근거리 저전송률 통신을 위한 차영상 웨이브릿 적응 양자화)

  • Jeong Won-Kyo;Leef Kyeong-Hwan;Lee Yong-Doo
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.9
    • /
    • pp.1246-1254
    • /
    • 2004
  • This paper presents a image coding method that is well adaptive to close-range video transmission because of its low titrate and simple coding procedure. At first, it reduces temporal redundancies by performing image DPCM between previous frame and current frame, and makes wavelet transformed image of this difference image. Then, the coefficients are quantized selectively by using the coefficient values of base level and mid-frequency level because inter-level redundancies are widely exists in multi-resolution images. Finally quantized coefficients are made iron the function that implies the target bitrate, the average coefficient energy, and the value of the level. The proposed method shows the effective Performance in the experiments using the continuous motion images and transition images.

  • PDF

A full-Hardwired Low-Power MPEG4@SP Video Encoder for Mobile Applications (모바일 향 저전력 동영상 압축을 위한 고집적 MPEG4@SP 동영상 압축기)

  • Shin, Sun Young;Park, Hyun Sang
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.392-400
    • /
    • 2005
  • Highly integrated MPEG-4@SP video compression engine, VideoCore, is proposed for mobile application. The primary components of video compression require the high memory bandwidth since they access the external memory frequently. They include motion estimation, motion compensation, quantization, discrete cosine transform, variable length coding, and so on. The motion estimation processor adopted in VideoCore utilizes the small-size local memories such that the video compression system accesses external memory as less frequently as possible. The entire video compression system is divided into two distinct sub-systems: the integer-unit motion estimation part and the others, and both operate concurrently in a pipelined architecture. Thus the VideoCore enables the real-time high-quality video compression with a relatively low operation frequency.