• Title/Summary/Keyword: 가도관

Search Result 63, Processing Time 0.023 seconds

Formation and Preservative Effectiveness of Inorganic Substances in Wood Treated with Potassium Carbonate and Calcium Chloride (탄산칼륨과 염화칼슘을 이용한 무기질 복합화 목재 중에 있어서 무기염의 생성과 방부효력)

  • Yoon, Sun-Mi;Lee, Jong-Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.126-132
    • /
    • 2001
  • This research is carried out to investigate the formation and preservative effectiveness of inorganic substance, calcium carbonate($CaCO_3$), in wood. The specimens were prepared by the impregnation with saturated solutions of potassium carbonate($K_2CO_3$) into the wood followed by precipitation in saturated solutions of calcium chloride($CaCl_2$) for 24h, 72h and 120h, and then they were leached in instrument flowing with water for 24h. The weight percent gains of $K_2CO_3$ solution impregnated specimens reached approximately a maximum value (108.1%) by 72h precipitation in $CaCl_2$ solutions. Inorganic substances were observed to he produced in the lumina of tracheids of specimens. From these inorganic substances filling in the tracheids, characteristic X-rays of calcium(Ca-$K_{\alpha}$) were detected by energy dispersive X-ray analyzer. Moreover, it was shown from a leaching treatment that these substances could not he leached easily from the specimens. Therefore, they were could he considered to be insoluble calcium carbonates. The weight losses of the prepared specimens were hardly occurred by test fungi attacks. Thus inorganic substances in specimens can be said to have preservative effectiveness.

  • PDF

Differences of Physical, Mechanical and Chemical Properties of Korean Red Pine(Pinus densiflora) Between Old and New Wood (소나무 고목재와 건전재의 물리, 기계, 화학적 특성 차이)

  • Shim, Kug-Bo;Lee, Do-Sik;Park, Byung-Soo;Cho, Sung-Taig;Kim, Kwang-Mo;Yeo, Hwan-Myeong
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The physical, mechanical and chemical properties of old and new Korean red pine (Pinus densiflora) were analyzed. The old woods were from dismantled timbers of Bonjungsa temple. The crystallized resin in the latewood was observed by microscopic analysis. Also, reduction of specific gravity, occurrence of microscopic cleavage of tracheid was observed in the old wood. The angle of microscopic cleavage of tracheid is estimated with the same angle of micro-fibril angle of 52 layer. The bending, compression and shear strength of old world were decreased about 35-27% than those of new wood. Dynamic modulus of elasticity measured by ultrasonic nondestructive test has the tendency of reducing by the time elapse of the wood usage. Therefore, deterioration of wood could be measured by reduction of specific gravity and dynamic MOE. The static MOE and mechanical properties of old wood could be predictable by measuring dynamic MOE in the longitudinal direction. Extractives of the old wood in 1-% NaOH solution are larger quantity than new wood. Therefore the decay of the wood could be evaluated by analyzing the chemical compound, especially 1-% NaOH solution. The results of this research could be used for understanding and prediction of the changing properties with elapsing time of wood.

  • PDF

Anatomy of the Korean mistletoe and their haustorial features in host plants (한국산 겨우살이과 식물의 형태와 기주별 흡기 특징)

  • Choi, Kyung;Park, Kwang-Woo;Kim, Hyuk-Jin;Lee, Jae-Dong;Koo, Jachoon;Whang, Sung-Soo
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.1
    • /
    • pp.4-11
    • /
    • 2009
  • Anatomical features of both leaves and stems of the four mistletoes in Korea (Viscum album var. coloratum, Korthalsella japonica, Loranthus yadoriki, L. tanaka) and of their secondary haustorial structure within several host plants were investigated. Among the four mistletoes, there were diagnostic characters of the anatomy of leaves and stems which enabled us to distinguish the four taxa. Leaves were observed to have three distinct characters including unifacial or bifacial leaves, the number of vascular bundles in the midveins, and the level of development of sclerenchyma cells. There were four diagnostic characters of stems: overall morphology of stems in transverse view, degree of cuticle development, arrangement of vascular bundles, and features of the sclerenchyma and pith. In order to determine secondary haustorial traits, the research focused on the seven host plants of L. yadoriki and on the five host plants of K. japonica. The following features were found to be important: presence or absence of an aerial runner root, the shape of the haustorial strand and flange, the degree of penetration into host tissues, and their development of shaft in transverse view, the development both of secondary haustorial cells and short tracheid in hyphae. Korthalsella japonica and L. yadorki were clearly distinguished by these characters. The secondary haustorial forms in each host were somewhat different, due to varying degrees of development in the strength of the host plants' wood. However, qualitative characters like the final position of the secondary haustorial penetration into host tissues and the development of short tracheid cells were not only affected by the degree of development of the host plants, but also useful for the systematic study.

Decay Resistance and Effectiveness of CCA Preservative against Decay on the 4 Imported Softwoods (수입침엽수(輸入針葉樹) 4수종(樹種)의 내후성(耐朽性) 및 CCA계(系) 목재방부제(木材防腐劑) 처리(處理)에 따른 방부효과(防腐效果))

  • Lee, Jong Shin;Kim, Young Sik;Han, Kie Sun
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.1
    • /
    • pp.42-48
    • /
    • 1995
  • With the aim to investigation of decay resistance and optimum concentration in chrome-copper-arsenic(CCA) preservative treatment on the imported softwoods from Siberia and North america, preservative absorption after CCA impregnation, weight losses and degradation patterns by decay fungi were examined. The density and latewood rate of Siberia softwoods(Spruce and Larch) were higher than those of North america softwoods(Douglas-fir and Western hemlock), resulting in the decrease of the CCA preservative absorption in the Siberia softwoods. In the case of untreated softwoods, decay resistance against Coriolus versicolor was lower than against Tyromyces palustris. For CCA treated softwoods, preservative effectiveness increased with increase in concentration of CCA solution. When treated with 0.7% CCA solution, efficiency value was more than 80 and 90 for C. versicolor and T. palustris, respectively. From this results, in the CCA preservative treatment for imported softwoods, it can be concluded that optimum concentration of CCA solution is approximately 0.7%. The absorption of CCA preservative distributed in the range of 3.8 and $5.5kg/m^3$. After exposure to testing fungi, in the untreated softwoods, bore holes formed in the cell walls and bordered pits, moreover, bordered pit canals enlarged by the fungi. However, 0.5% CCA treated softwoods was almost no deterioration in the cell walls and bordered pits due to decay.

  • PDF

Anatomical Identification of the Woods of Exotic Tree Species Grown in Korea (한국산(韓國產) 외래수종(外來樹種)의 목재해부학적(木材解剖學的) 식별(識別))

  • Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 1970
  • This study was carried out to investigate the identification of the woods of commercially important exotic tree species grown in Korea. The test trees used in this study were selected 21 species grown in Kwangyang and Suwon, Korea. The items of macroscopical features were observed and examined principally on the annual rings, transitions spring to the summerwood, pore types and arrangements, sap and heartwoods, wood colors, odor and tastes, resin ducts, parenchymas, and rays etc. The microscopical features observable in the elements, and their compositions such as vessels, tracheids, wood fibers, ray parenchyma cells, and intercellular cannals were observed and measured. The observed and measured results investigated were synthesized, and accordance with these results macroscopical and microscopical keys were prepared for the wood identification as seen in the text.

  • PDF

Anatomical and Physical Properties of Pitch Pine (Pinus rigida Miller) - The Characteristics of Stem, Branch, Root and Topwood - (리기다소나무(Pinus rigida Miller)의 목재해부학적(木材解剖學的) 및 물리학적성질(物理學的性質)에 관(關)한 연구(硏究) - 간(幹), 지(枝), 근(根), 초두목(梢頭木)의 특성(特性)을 중심(中心)으로 -)

  • Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.16 no.1
    • /
    • pp.33-62
    • /
    • 1972
  • Pitch pine (Pinus rigida Miller) in Korea has become one of the major silvicultural species for many years since it was introduced from the United States of America in 1907. To attain the more rational wood utilization basical researches on wood properties are primarily needed, since large scale of timber production from Pitch Pine trees has now been accomplishing in the forested areast hroughout the country. Under the circumustances, this experiment was carried out to study the wood anatomical, physical and mechanical properties of Pitch Pine grown in the country. Materials used in this study had been prepared by cutting the selected pitch pine trees from the Seoul National University Forests located in Suwon. To obtain and compare the anatomical and physical properties of the different parts of tree such as stem, branch, top and rootwood, this study had been divided into two categories (anatomical and physical). For the anatomical study macroscopical and microscopical features such as annual ring, intercellular cannal, ray, tracheid, ray trachid, ray parenchyma cell and pit etc. were observed and measured by the different parts (stem, branch, root and topwood) of tree. For the physical and mechanical properties the moisture content of geen wood, wood specific gravity, shrinkage, compression parallel to the grain, tension parallel and perpendicular to the grain, radial and tangential shear, bending, cleavage and hardness wree tested. According to the results this study may be concluded as follows: 1. The most important comparable features in general properties of wood among the different parts of tree were distinctness and width of annual ring, transition from spring to summerwood, wood color, odor and grain etc. In microscopical features the sizes of structural elements of wood were comparable features among the parts of tree. Among their features, length, width and thickness of tracheids, resin ducts and ray structures were most important. 2. In microscopical features among the different parts of tree stem and topwood were shown simillar reults in tissues. However in rootwood compared with other parts on the tangential surface distinctly larger ray structures were observed and measured. The maximum size of unseriate ray was attained to 27 cell ($550{\mu}$) height in length and 35 microns in width. Fusiform rays were formed occasionally the connected ray which contain one or several horizontal cannals. Branchwood was shown the same features like stemwood but the measured values were very low in comparing with other parts of tree. 3. Trachid length measured among the different parts of tree were shown largest in stem and shortest in branchwood. In comparing the tracheid length among the parts the differences were not shown only between stem and rootwood, but shown between all other parts of tree. Trachid diameters were shown widest in rootwood and narrowest in branchwood, and the differences among the different parts were not realized. Wall thickness were shown largest value in rootwood and smallest in branchwood, and the differences were shown between root and top or branchwood, and between stem and branch or top wood, but not shown between other parts of tree. 4. Moisture contents of green wood were shown highest in topwood and lowest in heartwood of stem. The differences among the different parts were recognized between top or heartwood and other parts of tree, but not between root and branchwood or root and sapwood. 5. Wood specific gravities were shown highest in stem and next order root and branchwood, but lowest in topwood. The differences were shown clearly between stemwood and other parts of tree, but not root and branchwood. However the significant difference is realized as most lowest value in topwood. 6. In compression strength parallel to the grain compared among the different parts of tree at the 14 percent of moisture content, highest strength was appeared in stem, next order branch and rootwood, but lowest in topwood. 7. In bending strength compared among the different parts of tree at the 14 percent of moisture content clearly highest strength was shown in branchwood, next order stem and root, but lowest in topwood. Though the branchwood has lower specific gravity than stemwood it was shown clearly high bending strength.

  • PDF

A Study on the Distribution of Pits on the Tracheid in Pinus koraiensis (잣나무 가도관(假導管)의 벽공(壁孔) 분포(分布)의 변이(變異))

  • Lee, Seung-Hwan;Lee, Sung-Jae;Lee, Won-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.60-63
    • /
    • 1993
  • In the present paper, we discribed distributions patterns of pits on the tracheids of Pinus koraiensis. The number of bordered pits on a tracheid is more numerous than that of cross-field pittings. And they appeared different in the number depending on the shape and size of tracheids. Both pit and cross-field pitting on a tracheid is fewer in number near the pith. The number of bordered pits on the tracheid increased rapidly from pith toward cambial zone but that of cross-field pittings increased gradually. The number of bordered pit and corss-field pitting is more frequent in the first-formed tracheid, and the number of bordered pit decreased rapidly from earlywood to latewood but that of corss-field pittings decreased gradually. Bordered pits on a tracheid are more numerous at the end of tracheids and cross-field pittings occur more frequently in the center part of a tracheid.

  • PDF

Effect of Hydroxypropyl Cellulose Treatment for Surface Stabilization of Waterlogged Wood of Wan-do Shipwreck Impregnated with Polyethylene Glycol (폴리에틸렌글리콜(PEG) 함침처리한 완도선 목재의 표면 안정화를 위한 하이드록시프로필 셀룰로오스(HPC) 처리효과)

  • Kim, Eung Ho;Han, Gyu Seong
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.155-165
    • /
    • 2016
  • This study aimed at verifying the effect of hydroxypropyl cellulose(HPC) treatment on polyethylene glycol(PEG)-treated waterlogged wood for surface stabilizing. This research investigated macroscopic and microscopic appearance, color change, weight change, and dimensional change. And effect of HPC was verified through variance analysis (ANOVA) and least significant difference test(LSD). HPC formed thin layer on the surface of wood specimen, and blocked the pore of tracheid and the gap between the crack. Specimens without deterioration showed no invisible change except HPC 1,000,000 treatment group. Whitening was appeared at the sound surface of HPC 1,000,000 treated wood. Specimens with deterioration showed a little color difference change by external moisture adsorption. Thin layer of HPC on the surface of wood specimen was maintained after the deterioration, and this HPC layer significantly suppressed the weight and dimensional change by moisture adsorption.

Anatomical Studies on the Features of Rays in Compression Wood of Korean Red Pine(Pinus densiflora S. et Z.) (소나무(Pinus densiflora S. et Z.) 압축이상재(壓縮異常材)의 방사조직(放射組織) 특성(特性)에 관한 해부학적(解剖學的) 연구(硏究))

  • Chung, Youn Jib;Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.2
    • /
    • pp.119-131
    • /
    • 1989
  • This experiment was executed to investigate and compare qualitative and quantitative anatomical features in compression wood, opposite wood, and side wood formed in a bent stem, a straight branch, and an exposed horizontal root of Korean red pine(Pinus densiflora S. et Z.). The respective four discs containing compression wood taken at 20cm interval both in stem and branch as well as a disc containing well developed compression wood from horizontal root were analyzed. Percentage of compression wood and eccentricity showed decreasing tendency with the increasing distance in height direction of stem and length direction of branch. The qualitative anatomical features of compression wood appeared to differ from those of side and opposite wood in very gradual tracheid transition from earlywood to latewood, roundish tracheid shape on cross surface, tracheid distortion at tip on radial surface, existence of intercellular space, and helical cavity in tracheid wall. And the differences in these qualitative features among the compression wood, opposite wood, and side wood became less intensive with the decreasing trends in percentage of compression wood and eccentricity. The quantitative anatomical features in compression wood also appeared to be wider in that respective widths of fusiform and uniseriate ray than those of opposite and side wood, but the heights of fusiform and uniseriate ray in compression wood were smaller than in opposite and side wood. The number of horizontal resin canal(fusiform ray) and uniseriate ray, however, showed no differences among the compression wood, opposite wood, and side wood. And the number of vertical resin canal in unit area, $4{\pi}mm^2$ of compression wood was fewer than that in opposite wood, whereas numerous vertical resin canals contained in a growth ring. These rays of compression wood seemed to be characterized by smaller height and wider width than those of opposite and side wood.

  • PDF

Global Warming Effects on the Cambial Growth of Larix leptolepis in Central Korea : Predictions from Simulation Modeling (지구온난화에 따른 중부 한국 낙엽송의 형성층 생장 예측: 시뮬레이션 모델링)

  • Won-Kyu Park;Eugene Vaganov;Maria Arbatskaya;Jeong-Wook Seo;Je-Su Kim
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.57-63
    • /
    • 2000
  • A simulation model was used to examine the effects of climate variation on the tree-ring structure of Larix leptolepis trees growing at a plantation plot in Worak National Park in central Korea. The model uses mathematical equations to simulate processes affecting cell(tracheid) size variations for individual rings using daily precipitation and temperature measurements. Limiting conditions are estimated from temperature, day length and a calculated water balance. The results indicate that the seasonal growth is mostly limited by the soil moisture content and precipitation income during April and May. The April-May temperature also inversely influences the growth by increasing water losses from soil. The global climate-change scenario which includes regional warming(increasing temperature in spring-summer periods) appears to decrease the duration of optimal growths. Consequently, the model estimated that Larix leptolepis would lose the total production of xylem by 25%.

  • PDF