• Title/Summary/Keyword: 가공 표면 오차

Search Result 51, Processing Time 0.02 seconds

The Effect on the Machining Phenomenon due to the Change of the Quill Rigidity in a Side-Cut Grinding (측면 연삭가공에 있어서 퀄축강성변화가 가공현상에 미치는 현상)

  • 김창수;서영일;이종찬;정성환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.33-37
    • /
    • 1995
  • A side-cut grinding generates a machining error by the decrease of the quill rigidity. In this paper, The effect on the grinding force, machining error and surface roughness due to the change of the quill rigidity is investigated experimentally. The slenderness ratio of the quill is a significant factor to analyse the change of the grinding force and machining error.

  • PDF

Fabrication of Aluminum Parabolic Mirror (알루미늄 포물면 반사경의 제작)

  • Gwak, Jeongha;Kim, Sanghyuk;Jeong, Byeongjoon;Park, Woojin;Kim, Geon Hee;Lee, Kwang Jo;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.65.1-65.1
    • /
    • 2016
  • 일반적으로 천체 망원경에 사용되는 반사경은 유리 소재로 제작된다. 그러나 알루미늄을 반사경 소재로 사용하면 광기계구조물과 반사경의 열팽창계수가 유사하여 치수 안정성이 높다는 장점이 있다. 뿐만 아니라 다이아몬드 선삭 기계 (Diamond Turning Machine, DTM)를 이용할 수 있기 때문에 반사경의 가공 시간 및 제작 비용을 절감할 수 있다. 본 연구에서는 알루미늄 합금 (Al6061-T6)을 소재로 구경 150 mm, 초점거리 600 mm인 포물면 반사경을 제작하였다. 우선 DTM을 이용해 알루미늄을 가공하였는데, 이 때 표면 조도와 관련된 고주파 오차 (High Frequency Error, HFE)가 발생한다. 따라서 표면 조도를 향상시키기 위한 추가적인 공정으로써 가공된 표면을 도금한 후 열처리를 하고, 폴리싱과 이중 코팅을 거쳐서 최종 반사경을 얻었다. 각 단계별 공정을 마친 후에는 접촉식 및 광학식 형상 측정 방법으로 표면 측정을 실시하여 이를 분석하였다. 본 발표에서는 각 공정 단계에서의 반사경 표면 분석 결과를 설명할 것이며, 제작된 알루미늄 반사경과 기존의 유리 소재의 반사경을 성능 면에서 비교할 것이다.

  • PDF

GRINDING OPTIMIZATION MODEL FOR NANOMETRIC SURFACE ROUGHNESS FOR ASPHERIC ASTRONOMICAL OPTICAL SURFACES (천체망원경용 비구면 반사경 표면조도 향상을 위한 최적연삭변수 수치결정모델)

  • Han, Jeong-Yeol;Kim, Sug-Whan;Kim, Geon-Hee;Han, In-Woo;Yang, Sun-Choel
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • Bound abrasive grinding is used for the initial fabrication phase of the precision aspheric mirrors for both space and ground based astronomical telescopes. We developed a new grinding optimization process that determines the input grinding variables for the target surface roughness, checks the grinding error magnitude in resulting surface roughnesses, and minimizes the required machining time. Using the machining data collected from the previous grinding runs and subsequently fed into the multivariable regression engine, the process has the evolving controllability that suggests the optimum set of grinding variables for each target surface roughness. The process model was then used for ten grinding experiments that resulted in the grinding accuracy of $=-0.906{\pm}3.38(\sigma)\;nm(Ra)$ for the target surface roughnesses of Zerodur substrate ranging from 96.1 nm (Ra) to 65.0 nm (Ra) The results imply that the quantitative process optimization technique developed in this study minimizes the machining time and offers the nanometric surface roughness controllability superior to the traditional, qualitative, craftsman based grinding process for the astronomical optical surfaces.

Study on Three-Dimensional Curved-Surface Machining Using Industrial Articulated Robot (다관절 로봇을 이용한 3차원 곡면가공 방안에 관한 연구)

  • Jung, Chang-Wook;Noh, Tae-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1071-1076
    • /
    • 2011
  • NC machines are generally used for machining operations because of their position accuracy, path accuracy, and machining reaction force. However, some NC machines require a very large space and are expensive. Recently, industrial articulated robot arms with large handling capability and wrist torque have been developed and the corresponding sensor technology has been improved. A machining robot for three-dimensional large curved objects was developed on the basis of an automatic-path-generation method. A self-position-compensation method with a laser displacement sensor was adopted for the six-axis robot developed, because the large articulated robot arms had poor position accuracy. An automatic-path-generation method using specific points was adopted to reduce the number of teaching points and time. In order to determine the proper machining conditions, various machining conditions such as tool rotation speed, cutting angle, cutting depth, and tool moving speed, were evaluated.

A Study on the Precision of a Machined Surface in Thrust Internal Grinding (스러스트 내면 연삭가공의 가공면 정도에 관한 연구)

  • Choi, Hwan;Seo, Chang-Yeon;Seo, Young-Il;Lee, Choong-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.73-79
    • /
    • 2016
  • In this paper, the grinding characteristics in thrust internal grinding have been studied using vitreous CBN wheels with a machining center. Grinding experiments have been performed according to grinding conditions such as wheel feed speed, cut depth, workpiece speed, rate of grinding width and number of grinding passes. The machining error, shape of machined surfaces, grinding force, and surface roughness have been investigated though these experiments. Based on the experimental results, the grinding characteristics on the machined surface in the internal thrust grinding are discussed.

Study of Machined Surface Error Compensation for Autonomous Manufacturing System (자율가공 시스템을 위한 가공면 오차보상에 관한 연구)

  • 서태일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.75-84
    • /
    • 2000
  • The main goal of our research is to compensate the milled surface errors induced by the tool deflection effects, which occur during the milling process. First, we predict cutting forces and tool deflection amount. Based on predicted deflection effects, we model milled surface shapes. We present a compensation methodology , which can generate a new tool trajectory, which is determined so as to compensate the milled surface errors. By considering manufacturing tolerance, tool path compensation is generalized. To validate the approaches proposed in this paper, we treat an illustrative example of profile milling process by using flat end mill. Simulation and experimental results are shown.

  • PDF

A development of the surface roughness model in face milling operation (정면밀링 가공에서 표면조도 모델 개발)

  • Baek, Dae-Kyun;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.149-156
    • /
    • 1995
  • This paper presents the surface profile of machined workpiece in face milling operation. The roughness model of feed direction is considered the cutting condition, the profile and run-out of inserts. For the dynamic model the cutting system can be modeled as avibratory system. The dynamic model of surface roughness is considered the relative displacements between tool and work- piece which can be obtained from the cutting system. These model can predict various surface roughnesses. i.e. maximum and arithmetic mean surface ruughnesses. Therefore, the developed model can be used for the monitoring of surface roughness.

  • PDF

Prediction and analysis of the machined surface accuracy in end milling (엔드 밀링의 가공 표면 정밀도 예측과 해석)

  • 고정훈;윤원수;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1018-1022
    • /
    • 2000
  • Enhancement of the accuracy of products and productivity are essential to survive in a global industrial competition. This trend requires tighter dimensional tolerance specifications. To actively cope with the rapid change of the workpiece material and cutter geometry, a general method that can predict and analyze the machined surface is needed. Surface generation model for the prediction of the topography of machined surfaces is developed based on cutting force model considering cutter deflection and runout. This paper presents the method that constructs the three-dimensional machined surface error following the movement of a cutter, irrespective of the variations of cutting conditions. In addition, the effects of the cutting forces and the kink shape on the machined surface are extensively investigated.

  • PDF

A Study on the Precision Machining during End Milling Poeration by Prediction of Generated Surface Topography (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • 이상규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.788-793
    • /
    • 1997
  • The surface,generated by end milling operation, is deteriorated by tool runout,vibration,friction,tool deflection, etc. In many source,deflection of tool affects to surfave accuracy. To develop a surface accracy model,method for the prediction of the topography of machined surfaces has been developed based on models of machine tool kinematics and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool resulted in cutting force. For the more accurate prediction of cutting force,flexible end mill model is used to simulate cutting process. Compute simu;ation have shown the feasibility of the surface generation system.

  • PDF

Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF