• Title/Summary/Keyword: 가공 특징형상

Search Result 70, Processing Time 0.028 seconds

A Study on the relations among the Feature, Function, and Manufacturing Process to integrate the Part Design and Process Planning in the Early Design Stage. (제품개발 초기단계의 제품설계와 공정설계의 통합을 위한 특징형상과 의도기능 및 가공 공정간의 상관 관계에 관한 연구)

  • 임진승;김용세
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.540-545
    • /
    • 2002
  • The tight integration of the part design and process planning is very effective to high quality product development and cost effective manufacturing. Moreover, the integration in the early design stage, that is, the integration of the conceptual design and the conceptual process planning may take a big impact with the forecasting the alternative of the design and manufacturing. In this paper, the real field parts are studied about the relations among the Feature, Function, and Manufacturing Process taking the style of reverse engineering method, to found the base of the systematic computer system for the integrated product design and manufacturing process planning.

  • PDF

A feature data model in milling process planning (밀링 공정설계의 특징형상 데이터 모델)

  • Lee, Choong-Soo;Rho, Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.209-216
    • /
    • 1997
  • A feature is well known as a medium to integrate CAD, CAPP and CAM systems. For a part drawing including both simple geometry and compound geometry, a process plan such as the selection of process, machine tool, cutting tool etc. normally needs simple geometry data and non-geometry data of the feature as the input. However, a extended process plan such as the generation of process sequence, operation sequence, jig & fixture, NC program etc. necessarily needs the compound geometry data as well as the simple geometry data and non-geometry data. In this paper, we propose a feature data model according to the result of analyzing necessary data, including the compound geometry data, the simple geometry data and the non-geometry data. Also, an example of the feature data model in milling process planning is described.

Standard Operation Time Estimation Using Features in Mold Die Manufacturing (특징형상을 사용한 사출금형 표준 가공공수계산)

  • 이충수;노형민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.223-231
    • /
    • 1994
  • When manufacturing mold dies, an operation sheet is required for each part of the mold dies. The consistent estimation of standard operation time in the operation sheet is difficult, because the estimation is mainly based on subjective judgement. In order to resolve it, concept of feature is introduced in this study. For CAD/CAPP integration, feature technology is being implemented to represent geometrical and technological information of part drawings. A feature database has already been designed, and then used to generate data for process and operation planning modules. Related to this former research, standard operation time is calculated using the feature information and tables used in a real factory.

Development of New Rapid Prototyping System Performing both Deposition and Machining (II) (적층과 절삭을 복합적으로 수행하는 새로운 개념의 판재 적층식 쾌속 시작 시스템의 개발(II) - 공정계획 시스템 -)

  • Heo, Jeong-Hun;Lee, Geon-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2235-2245
    • /
    • 2000
  • The necessity of using rapid prototyping(RP) for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy, materials, aid cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed. For the new hybrid RP process to maintain the same degree of process automation as in currently available processes like SLA or FDNI, a sophisticated process planning system is developed. In the process planner, CAD models(STEP AP203) are partitioned into 3D manufacturable volumes called 'Ueposition feature segment"(DFS) after machining features called "machining feature segmenf'(MFS) are extracted from the initial CAD model. Once MFS and DFS are identified, the process planner arranges them into a chain of processes and automatically generates machining information for each DFS and MFS. The goal of this paper is to present a framework for a process planning system for hybrid RP processes and to outline the geometric algorithms involved in developing such an environment.

A Study on the Tolerance Modeler for Feature-based CAPP (특징형상에 기반한 자동공정설계용 공차 모델러 연구)

  • Kim, Jae-Gwan;No, Hyeong-Min;Lee, Su-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.48-54
    • /
    • 2002
  • A part definition must not only provide shape information of a nominal part but also contain non-shape information such as tolerances, surface roughness and material specifications. Although machining features are useful for suitable shape information fur process reasoning in CAPP, they need to be integrated with tolerance information for effective process planning. We develop a tolerance modeler that efficiently integrates the machining features with the tolerance information fur feature-based CAPP. It is based on the association of machining features, tolerance features, and tolerances. The tolerance features in this study, where tolerances are assigned, are classified into two types; one type is a face that is a topological entity on a solid model and the other type is a functional geometry that is not referenced to topological entities. The (unctional geometry is represented by using machining features. All the data fur representing the tolerance information are stored completely and unambiguously in an independent tolerance data structure. The developed tolerance modeler is implemented as a module of a comprehensive feature-based CAPP system.

Feature-based Extraction of Machining Features (특징형상 접근방법에 의한 가공특징형상 추출)

  • 이재열;김광수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.139-152
    • /
    • 1999
  • This paper presents a feature-based approach to extracting machining features fro a feature-based design model. In the approach, a design feature to machining feature conversion process incrementally converts each added design feature into a machining feature or a set of machining features. The proposed approach an efficiently handle protrusion features and interacting features since it takes advantage of design feature information, design intent, and functional requirements during feature extraction. Protrusion features cannot be directly mapped into machining features so that the removal volumes surrounding protrusion features are extracted and converted it no machining features. By utilizing feature information as well as geometry information during feature extraction, the proposed approach can easily overcome inherent problems relating to feature recognition such as feature interactions and loss of design intent. In addition, a feature extraction process can be simplified, and a large set of complex part can be handled with ease.

  • PDF

스크류 로터의 가공을 위한 CUTTER의 치형설계

  • 한재찬;홍영식;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.86-90
    • /
    • 1992
  • 스크류 압축기는 진동이 작고 맥동이 적으며, 소형이고 고효율이라는 특징이 있다. 또한 식품, 화학, 전자공업 등에서 무윤활식 압축기로 사용되어지고 있다. 본 연구에서는 호프로 자른 것과 같은 다각형 오차를 만들지 않고 매끄러운 면을 얻을 수 있는 스크류 로터의 축직각 단면좌표를 이용한 cutter의 형상을 설계하는 것을 목적으로 한다.

Some issues in Computer Aided Process Planning for integration of manufacturing information (생산정보의 통합과 공정설계 자동화 과제)

  • 노형민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.25-30
    • /
    • 1993
  • 생산시스템에 지능을 부여하려는 기술개발을 선진국에서는 최근 IMS프로그램을 통해 시도하고 있다. 이중 '차세대 생산시스템을 구축을 위한 통합모델 기초 연구' 과제에 일본에서 많은 관심을 보이고 있으며, 이는 CIM기술실현을 위해서 중요 과제로 판단된다. 이와같이 설계, 가공 및 생산관리 정보를 통합하려는 목적을 갖는 과제의 하나로 공정설계 자동화 과제가 있다. 이 과제에서는 생산정보의 통합을 위한 노력으로 특징형상(Feature) 기술과 데이터베이스 이용 기술 등을 개발하고 있다. 본 논문에서는 IMS 사업의 관심과제, 생산정보 통합 측면에서 상기 기술에 대한 이해, 그리고 공정설계 자동화 연구과제를 제한된 범위에서 생각해 본다.

  • PDF