• Title/Summary/Keyword: 가공모델

Search Result 960, Processing Time 0.023 seconds

Mathematical expression for the Prediction of Strip Profile in hot rolling mill (열연 판형상 예측 수식모델 개발)

  • Cho Y.S.;Hwang S.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.70-73
    • /
    • 2004
  • The approach in this thesis is for prediction of deformed strip profile in hot rolling mill. This approach shows how to make an expression as a mathematical form in predicting strip profile. This approach is based on the velocity field, shear stress and material flow on the strip edge along width direction and lateral displacement and stress along width are analytically calculated. Roll force is calculated in each section and then combined together to show roll force distribution along width. All the assumptions to make equation form for this approach are supported by FEM simulation result and the result of model is verified by FEM result. So, this model will supply very useful tool to the researcher and engineers which takes less time and has similar accuracy in predicting roll force profile comparing to FEM simulation. This model has to be combined with deformed roll profile model, which include thermal crown prediction and wear prediction model to predict deformed strip profile.

  • PDF

Friction Model of Sheet Metal Forming Considering Lubricant and Surface Roughness (윤활과 표면조도를 고려한 박판 성형 마찰 모델)

  • 이봉현;금영탁
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.543-550
    • /
    • 2001
  • In order to find the effect of material property and lubricant viscosity on the frictional characteristics a sheet metal friction tester was designed and tensile test, surface roughness test, and friction test were performed with several kinds of drawing oils. Test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, friction coefficient is also high. Using these test results, the friction model considering lubricant viscosity and surface roughness is developed. The validity and accuracy of the friction model are shown by comparing the punch loads among FEM analysis results employing current friction model and conventional friction model respectively and experimental measurement.

  • PDF

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(II) - Numerical Simulation of Crack Arrest Behavior (보강판의 균열거동해석과 Crack Arrest 설계(II) - Crack Arrest 거동의 시뮬레이션)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.50-56
    • /
    • 2005
  • To demonstrate the feasibility of utilizing FCAD chart proposed in our previous work, series of crack growth/arrest behavior in the integrally stiffened panels were simulated by numerical method using upper mentioned FCAD charts and a new crack growth rate equation. It is concluded that proposed family of FCAD curves, in the form of non-dimensional arrest load ranges, are reliable indicators of fatigue crack growth/arrest behavior of integrally stiffened panels considered here.

  • PDF

Development of Prediction Model for Sidewall Curl in Sheet Meta1 Forming(II)-Experimental Validation (박판성형시 컬 예측모델 개발(II)-실험적 검증)

  • Joo, B.D.;Park, H.K.;Kim, D.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.438-442
    • /
    • 2007
  • Sidewall curl is the curvature that results from non-uniform through-thickness strain present in the sheet stamping process which involves material flow over a die radius. In order to understand and control curl for tight fit-up tolerances, an analytical model that can provide a reliable measure for the amount of curl would be very helpful. In this study, a model is developed based on the moment-curvature relationship during bending-under-tension operations. For the verification of analytical model, sidewall curl is experimentally measured after deformation of a strip using a bending-under-tension test system. The results show a consistent relationship between the theoretically predicted value and the experimentally obtained one, especially in regions of high curl.

Prediction of Steady-state Strip Profile during Hot Rolling - PartⅡ: Development of a Mathematical Model (열연 공정 정상상태 판 프로파일 예측 - PartⅡ: 수식 모델 개발)

  • Lee, J. S.;Hwang, S. M.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2016
  • In the current study, we present a new model for the prediction of the strip profile and the residual stresses. This new approach is an analytical model that predicts the residual stresses from the effect of post-deformation. Since the residual stress cannot exceed the yield strength of the material, post-yielding may possibly occur in the post-deformation zone prior to the strip reaching the steady-state zone. The prediction accuracy of the proposed model is examined through comparison with the predictions from 3-D finite element (FE) simulations.

A Comparative Study of Failure Criteria for Magnesium Alloy Sheet under Warm Press Forming Condition (마그네슘 판재 온간 성형의 파단 예측 모델 비교 연구)

  • Kim, H.K.;Kim, J.D.;Heo, Y.M.;Kim, W.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.113-118
    • /
    • 2012
  • Magnesium sheet alloys possess limited plastic formability at room temperature but their formability is substantially improved at elevated temperatures and optimum strain rates. In the present paper, three different types of failure criteria, namely, strain-based, stress-based, and work-based criteria, are compared for their applicability to warm press forming of magnesium sheet alloys. Warm deep-drawing experiments were conducted on AZ31 alloy sheet, and the results were used to assess the strength and weakness of the failure criteria.

A Study on Control Characteristics of Fluid Power Elevator (유압식 엘리베이터의 제어특성에 관한 연구)

  • Yum, Man-Oh
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.41-47
    • /
    • 2003
  • In this study an elevator plant model is made with an electro-hydraulic servo valve and a single rod cylinder. A PID controller, a velocity feedback PID controller and a MRAC controller ate designed. Experimental apparatus including an elevator plant model and these controllers are constructed. In case of experiment, external load which is made with a hydraulic cylinder and a pressure control valve burdens varying load to the elevator plant model being driven. With experiment, the control performances of three proposed control methods are compared.

  • PDF

Selection and Verification of Press Forming Pipe Model using Pipefitting (피팅용 프레스 포밍 파이프 성형 모델 선정 및 검증)

  • Kim, TaeGual;Kim, TaeHo;Park, JoonHong;Park, YoungChul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.43-49
    • /
    • 2015
  • This paper describes the design of a forged fitting form to acquire a method of product design measurement by target measurement standards. The pipefitting connects each pipe and combines seals and nipples with the pipes normally. Therefore, the section combined with the fitting pipe was measured by a 3D scanner, and the acquired measurement and the design measurement were obtained after modification of the forged fitting pipe by that standard. Moreover, the accuracy of the model was verified through leakage testing of the oil and verification of the design measurement for accuracy decisions on the design measurement after modification of the product.

Design of Non-linear Observer to Estimate Yaw Rate and Sidel Slip Angle (Yaw Rate 및 Side Slip Angle 추정을 위한 비선형 관측기 설계)

  • Song, Jeong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • A non-linear vehicle model and an observer are designed to observe the yaw rate and the body side slip angle when a vehicle is turning maneuver in this study. The developed vehicle model is a full car model and has fourteen degree of freedom. A Luenberg observer is applied to develop the observer. The vehicle model is validated with a reference result and shows good accordance. The observer is tested on dry asphalt, wet asphalt and snow paved road. The results prove the performance of observer is robust and reliable.

Structural Performance Test of Optimized Outer Tie Rod (아우터타이로드 최적화 모델의 구조성능시험)

  • Kim, Jong-Kyu;Seo, Sun-Min;Kim, Young-Jun;Lee, Dong-Jin;Lee, Seul;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.82-87
    • /
    • 2012
  • The outer tie rod that is a part of steering system connects the steering gear to the steering knuckle via the inner tie rod. The formal study suggested the optimized structural design of an outer tie rod installed in a passenger car. Its weight is 284.7g, which is 57.2% lighter weight than initial steel model. This study validates the optimized design of the outer tie rod considering buckling and durability. The assembled unit of an inner tie rod and outer tie rod is utilized to perform the test of the bending strength of the outer tie rod. On the contrary, 1/2 car is utilized to perform the test of its durability performance.