상황인식 컴퓨팅 환경에서 가장 핵심적인 부분은 서비스를 제공받는 객체의 상황(Context)을 인식하고 정보화하여 그 상황에 따라서 객체 중심의 지능화된 최적의 서비스를 제공해 주는 것이다. 이러한 지능화된 최적의 서비스를 제공하기 위해서는 최적의 상황을 인식하는 상황인식 컴퓨팅 기술 연구와 그 상황을 설계하는 모델링 기술이 중요하다. 또한, 인간과 컴퓨터간의 의사소통을 원활히 할 수 있는 최적의 상황을 인식해야 한다. 현재까지 연구된 대부분의 상황인식 컴퓨팅 기술은 상황정보로 객체의 위치정보와 객체의 식별정보만을 주로 사용하고 있다. 그러므로 지정된 공간에서 상황을 발생시키는 객체를 식별하는 일과 식별된 객체가 발생하는 상황의 인식에만 주된 초점을 두고 있다. 그러나 본 논문에서는 객체의 감정표현단어를 상황정보로 사용하여 감정인식을 위한 상황인식 미들웨어로서 ECAM의 구조를 제안한다. ECAM은 감정표현단어의 범주화 기술을 기반으로 온톨로지를 구축하여 객체의 감정을 인식한다. 객체의 감정표현단어 정보를 상황정보로 사용하고, 인간의 감정에 영향을 미칠 수 있는 환경정보(온도, 습도, 날씨)를 추가하여 인식한다. 객체의 감정을 표현하기 위해서 OWL 언어를 사용하여 온톨로지를 구축하였으며, 감정추론 엔진은 Jena를 사용하였다.
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.390-394
/
2010
본 논문에서는 영상인식에서 널리 사용되는 지역적 특징인 SIFT와 부분공간분석에 의한 차원축소방법의 결합을 통하여 얼굴을 인식하는 방법을 제안한다. 기존의 SIFT기반 영상인식 방법에서는 추출된 키 포인트 각각에 대하여 계산된 특징기술자들을 개별적으로 비교하여 얻어지는 유사도를 바탕으로 인식을 수행하는데 반해, 본 논문에서 제안하는 접근법은 SIFT의 특징기술자를 명도 값으로 표현된 얼굴 영상을 여려 변형에 강건한 형태로 표현되도록 변환하는 표현방식으로 본다. SIFT기반의 특징기술자에 의해 표현된 얼굴 영상을 부분공간분석법에 의해 저차원의 특징벡터로 다시 표현되고, 이 특징벡터를 이용하여 얼굴인식을 수행한다. 잘 알려진 벤치마크 데이터인 AR 데이터베이스에 대한 실험을 통해 제안한 방법이 조명 변화와 가려짐에 강인한 인식 결과를 보여줄 뿐 아니라, 기존의 SIFT 기반의 얼굴 인식 방법에 비하여 우수한 처리 속도를 보임을 확인하였다.
Yejin Lee;Youngjin Jang;Tae-il Kim;Sung-Won Choi;Harksoo Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.354-359
/
2022
에세이 자동 평가는 주어진 에세이를 읽고 자동으로 평가하는 작업이다. 본 논문에서는 효과적인 에세이 자동 평가 모델을 위해 Argument Mining 작업을 사용하여 에세이의 논증 구조가 반영된 에세이 표현을 만들고, 에세이의 평가 항목별 표현을 학습하는 방법을 제안한다. 실험을 통해 제안하는 에세이 표현이 사전 학습 언어 모델로 얻은 표현보다 우수함을 입증했으며, 에세이 평가를 위해 평가 항목별로 다른 표현을 학습하는 것이 보다 효과적임을 보였다. 최종 제안 모델의 성능은 QWK 기준으로 0.543에서 0.627까지 향상되어 사람의 평가와 상당히 일치한다.
Kim, SeonTae;Kim, JeMin;Park, JoonSeok;Yoo, WeonHee
Annual Conference of KIPS
/
2011.11a
/
pp.201-204
/
2011
소프트웨어의 비중이 커짐에 따라 소프트웨어가 안전하게 실행되는 것이 보장되어야 한다. 이를 위해 다양한 검증 도구를 통해 검증이 수행된다. 하지만 소스 코드와 명세를 입력으로 받는 검증도구는 검증조건 생성이 어렵기 때문에 검증 조건 생성에 용이하도록 입력 값을 중간 표현 언어로 변환해 주는 것이 필요하다. 본 논문에서는 검증의 정확성을 위해 다양하게 존재하는 중간 표현 언어의 특성을 분석하고 예제를 통해 비교한다. 중간 표현 언어의 비교 분석 결과를 통해 검증을 수행할 때 검증의 목적과 환경에 적합한 중간 표현 언어 선택으로 검증의 효율성과 정확성을 향상시킨다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.298-303
/
2020
온라인 공간에서 특정인, 혹은 특정 집단의 사람들을 대상으로 한 혐오 표현은 당사자에게 정신적 고통을 미칠 뿐 아니라 이를 보는 이에게도 간접적인 불쾌함을 유발한다. 이에 관한 문제의식은 사회적으로 공감대가 형성된 바 있지만, 아직 한국어에서는 많은 연구들이 혐오 표현 자체의 논의에 집중하고 있으며, 이는 실제로 관찰되는 혐오 표현들의 자동 탐지 및 예방에는 효과적인 정보를 제공하지 못하는 것이 사실이다. 이에 우리는 실제 온라인 댓글들을 탐구하여 혐오, 모욕 및 사회적 편견을 탐지할 수 있는 모델 학습에 필요한 코퍼스 구축 가이드라인을 제작하였다. 구체적인 사례를 동반한 가이드라인과 크라우드소싱을 바탕으로 약 9천 3백 문장 가량의 코퍼스를 구축하였으며, 해당 데이터에 관한 개요와 함께 우리의 접근 방식이 어떤 점에서 기존의 담론과 연관되어 있는지에 대한 분석을 제시한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.1195-1198
/
2022
홀로그램은 빛의 세기와 위상 정보를 모두 기록함으로써 3차원 영상 정보를 기록 및 재현할 수 있는 차세대 영상 시스템이다. 홀로그램은 부동 소수점의 복소 데이터로 실수, 허수 또는 진폭, 위상 신호로 분리되어 압축된다. 본 논문에서는 복소 홀로그램 영상의 표현방식에 따른 압축성능을 비교해보고, 진폭-위상 압축에 대해 압축 친화적인 복소 홀로그램 변환 방식을 제안한다. 이후, 각 표현방식의 압축에서 효율적인 비트량 할당 방법을 제시한다. 본 논문은 제안방식인 QS 진폭-위상 표현이 실수-허수 표현만큼 높은 압축성능을 갖는 것을 확인하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.385-387
/
2023
본 논문에서는 물감의 유체성, 확산성, 흡착성, 흡수성 및 응고성과 같은 물감의 물리적 특성을 활용하여 사실적인 페인트 시뮬레이션할 수 있는 입자 기반 프레임워크를 제안한다. 현실에서는 물감이 흐르고, 확산하는 것뿐만 아니라 흡착하거나 시간에 지남에 따라 응고되는 현상을 쉽게 관찰할 수 있다. 본 논문에서는 이런 현상을 사실적으로 표현하기 위하여 SPH(Smoothed-particle hydrodynamics) 방식을 시뮬레이션 하였으며 Isotropic kernel이 아닌 Anisotropic kernel을 사용하여 확산 과정을 표현하는 방식을 소개한다. 우리의 방법은 Fick's law를 바탕으로 물질 전달 방식을 이용한 확산 과정을 표현하였으며, 시간이 지남에 따라 굳어가는 응고성, 그리고 Van der waals 힘을 기반으로 한 흡착 과정을 동시적으로 표현하여 사실적인 페인트를 구현하였다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.633-637
/
2023
암시적 비윤리 표현은 명시적 비윤리 표현과 달리 학습 데이터 선별이 어려울 뿐만 아니라 추가 생산 패턴 예측이 까다롭다. 고로 암시적 비윤리 표현에 대한 언어 모델의 감지 능력을 기르기 위해서는 모델의 취약성을 발견하는 연구가 반드시 선행되어야 한다. 본 논문에서는 암시적 비윤리 표현에 대한 표기 변경과 긍정 요소 삽입이라는 두 가지 변형을 통해 모델의 예측 변화를 유도하였다. 그 결과 모델이 야민정음과 외계어를 사용한 언어 변형에 취약하다는 사실을 발견하였다. 이에 더해 이모티콘이 텍스트와 함께 사용되는 경우 텍스트 자체보다 이모티콘의 효과가 더 크다는 사실을 밝혀내었다.
의료 분야에서 AI 모델의 활용이 증가하고 있지만, 모델의 예측 불확실성을 정확하게 평가하고 표현하는 것이 중요하다. 본 연구는 이러한 문제를 해결하기 위해 AI-driven 방식을 제안하며, 특히 의료 영상 변환 모델에 대한 불확실성 표현과 데이터 한계 극복 방법론을 제안한다. 제안된 AI-driven 안저영상 변환 모델은 기존 GAN과는 다르게 구조가 이루어져 있으며, 신뢰도가 낮은 영역을 구분하고 시각화하여 표현할 수 있다. 실험 결과, 제안된 방법은 기존 모델과 비교하여 영상 변환 성능이 크게 향상되었으며, 불확실성에 대한 정확도 평가에서도 AI-driven 방식이 높은 성능을 보인다. 결론적으로, 본 연구는 AI-driven 방식을 통해 의료 AI에서의 불확실성 표현의 가능성을 확인하였으며, 이 방식이 데이터의 한계와 불확실성을 극복할 수 있을 것으로 기대된다.
실세계에서는 두개 이상의 객체들이 서로 관계를 맺고있다. 단 두 객체 간의 관계만 표현하는 그래프와는 달리 여러 객체들 간의 관계를 표현하는 하이퍼그래프는 그룹 상호작용을 잘 표현할 수 있다. 이러한 강점으로 하이퍼그래프를 활용한 응용들이 많이 제안되고 있다. 하이퍼그래프 임베딩은 하이퍼그래프의 구조를 이용하여 노드를 저차원 벡터로 표현하는 방법이다. 이렇게 표현된 벡터들은 노드 분류, 커뮤니티 탐지, 링크예측 등 광범위한 응용에 활용된다. 하지만 하이퍼그래프는 그래프보다 희소성 문제가 훨씬 더 심해 데이터 셋의 희소성이 하이퍼그래프 임베딩 방법의 성능에 큰 영향을 미칠 수 있다. 따라서, 본 논문에서는 희소성에 따른 하이퍼그래프 임베딩 방법들의 성능을 분석하고자 한다. 우리는 8 개의 실세계 데이터셋을 이용한 실험을 통해 데이터가 희소할수록 하이퍼그래프 임베딩 방법들의 성능이 감소하는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.