• Title/Summary/Keyword: π-π Interaction

Search Result 37, Processing Time 0.021 seconds

A Two-dimensional Supramolecular Network Built through Unique π-πStacking: Synthesis and Characterization of [Cu(phen)2(μ-ID A)Cu(phen)·(NO3)](NO3)·4(H2O)

  • Lin, Jian-Guo;Qiu, Ling Qiu;Xu, Yan-Yan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1021-1025
    • /
    • 2009
  • A novel supramolecular network containing binuclear copper unit $[Cu(phen)_{2}({\mu}-ID\;A)Cu(phen){\cdot}(NO_{3})](NO_{3}){\cdot}4(H_{2}O)$ (1) was synthesized through the self-assembly of iminodiacetic acid ($H_2IDA$) and 1,10-phenanthroline (phen) in the condition of pH = 6. It has been characterized by the infrared (IR) spectroscopy, elemental analysis, single crystal X-ray diffraction, and thermogravimetric analysis (TGA). 1 shows a 2-D supramolecular structure assembled through strong and unique $\pi-\pi$ packing interactions. Density functional theory (DFT) calculations show that theoretical optimized structures can well reproduce the experimental structure. The TGA and powder X-ray diffraction (PXRD) curves indicate that the complex 1 can maintain the structural integrity even at the loss of free water molecules. The magnetic property is also reported in this paper.

Copper phthalocyanine conjugated PANI coated screen printed carbon electrode for electrochemical sensing of 4-NP

  • Ramalingam Manikandan;Jang-Hee Yoon;Seung-Cheol Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.40-54
    • /
    • 2023
  • In this work, we synthesized a novel electrochemical sensing materials based on tetracarboxylic copper phthalocyanine (TcCuPtc) conjugated PANI (TcCuPtc@PANI). The synthesized materials were employed to modify the screen-printed carbon electrode (SPCE) for the selective sensing of 4-nitrophenol. The TcCuPtc was conjugated with conducting polymer of PANI through the electrostatic interaction and π-π electron conjugation, the polymer film of PANI to inhibit the leakage of TcCuPtc from the surface of the electrode. The prepared TcCuPtc@PANI were characterized and confirmed by scanning electron microscopy (SEM) with EDX, ATR-IR, UV-vis absorption spectroscopy, cyclic voltammetry, and differential pulse voltammetry techniques. The prepared TcCuPtc@PANI/SPCE showed an excellent electrocatalytic sensing of 4-NP in the linear concentrations from 3 to 500 nM with a LOD of 0.03 nM and a sensitivity of 8.8294 ㎂/nM cm-2. However, the prepared TcCuPtc@PANI/SPCE showed selective sensing of 4-NP in the presence of other interfering species. The practical applicability of the TcCuPtc@PANI/SPCE was employed for the sensing of 4-NP in different water samples by standard addition method and showed satisfactory recovery results.

Solvatochromic Effects and Hydrogen Bonding Interactions of 4-(4-Nitrophenylazo)-1-naphthol Derivatives

  • 신동명;권오악
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.574-577
    • /
    • 1995
  • Solvatochromic effect and hydrogen bonding interaction of NPNOH, NPNO- and NPNOR were investigated. Electronic transition energies of the dyes were plotted against empirical solvent polarity parameters, Taft's π* and Reichardt's ET(30). Good correlations were observed when the excitation energies were plotted against the energy calculated by multiple linear regression method which was developed by Taft. There is an intrinsic difference between betaine for ET(30) polarity scale and the azoderivative, which is derived from the specific hydrogen bond incurred with probe molecules and solvents. The hydrogen bonding plays a very important role for stabilization of an excited state molecule by solvents especially when a solute possesses a negative charge as with NPNO-.

Electron Transfer to Hydroxylase through Component Interactions in Soluble Methane Monooxygenase

  • Lee, Chaemin;Hwang, Yunha;Kang, Hyun Goo;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.287-293
    • /
    • 2022
  • The hydroxylation of methane (CH4) is crucial to the field of environmental microbiology, owing to the heat capacity of methane, which is much higher than that of carbon dioxide (CO2). Soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily, is essential for the hydroxylation of specific substrates, including hydroxylase (MMOH), regulatory component (MMOB), and reductase (MMOR). The diiron active site positioned in the MMOH α-subunit is reduced through the interaction of MMOR in the catalytic cycle. The electron transfer pathway, however, is not yet fully understood due to the absence of complex structures with reductases. A type II methanotroph, Methylosinus sporium 5, successfully expressed sMMO and hydroxylase, which were purified for the study of the mechanisms. Studies on the MMOH-MMOB interaction have demonstrated that Tyr76 and Trp78 induce hydrophobic interactions through π-π stacking. Structural analysis and sequencing of the ferredoxin domain in MMOR (MMOR-Fd) suggested that Tyr93 and Tyr95 could be key residues for electron transfer. Mutational studies of these residues have shown that the concentrations of flavin adenine dinucleotide (FAD) and iron ions are changed. The measurements of dissociation constants (Kds) between hydroxylase and mutated reductases confirmed that the binding affinities were not significantly changed, although the specific enzyme activities were significantly reduced by MMOR-Y93A. This result shows that Tyr93 could be a crucial residue for the electron transfer route at the interface between hydroxylase and reductase.

Theoretical Studies on the Structure and Acidity of Meldrum's Acid and Related Compounds

  • Lee, Ik-Choon;Han, In-Suk;Kim, Chang-Kon;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1141-1149
    • /
    • 2003
  • The structures and gas-phase ionization energies (ΔG°) of Meldrum's acid (I) and related cyclic (II-VI) and acyclic compounds (VII-IX) are investigated theoretically at the MP2/6-31+$G^*$, B3LYP/6-31+$G^*$, B3LYP/6- 311+$G^{**}$, B3LYP/6-311++G(3df,2p) and G3(+)(MP2) levels. Conformations of three neutral cyclic series vary gradually from boat (Meldrum's acid, I), to twisted chair (II) and to chair (III) as the methylene group is substituted for the ether oxygen successively. The preferred boat form of I can be ascribed to the two strong $n_O$ → σ* c-c antiperiplanar vicinal charge transfer interactions and electrostatic attraction between negatively charged C¹ and positively charged C⁴at the opposite end of the boat. All the deprotonated anionic forms have half-chair forms due to the two strong $n_C$ → π* c=0 vicinal charge transfer interactions. The dipole-dipole interaction theory cannot account for the higher acidity of Meldrum's acid (I) than dimedone (III). The origin of the anomalously high acidity of I is the strong increase in the vicinal charge transfer ($n_C$ → π* c=0) and 1,4-attrative electrostatic interactions (C¹↔C⁴) in the ionization (I → $I^-$ + $H^+$). In the acyclic series (VII-IX) the positively charged end atom, C⁴, is absent and the attractive electrostatic stabilization (C¹↔C⁴) is missing in the anionic form so that the acidities are much less than the corresponding cyclic series.

Theoretical Study of the Interaction of N2O with Pd(110)

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2369-2376
    • /
    • 2007
  • N2O has been found from experimental and theoretical considerations to bind on-top to the Pd(110) surface in a tilted end-on fashion via its terminal N atom. We use a frontier orbital description of the bonding interactions in the Pd-N2O system to obtain molecular insight into the catalytic mechanism of the activation of N2O by the Pd(110) surface giving rise to the formation of N2 and O on the surface. For the tilted end-on N2O binding mode, the LUMO 3π of N2O has good overlap with the Pd dσ and dπ orbitals which can serve as the electron donors. The donor-acceptor orbital overlap is favorable for electron transfer from Pd to N2O and is expected to dominate the surface reaction pathway of N2O decomposition.

Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes

  • Wang, Jianlong;Zhuang, Shuting
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.328-336
    • /
    • 2020
  • Cesium is a major product of uranium fission, which is the most commonly existed radionuclide in radioactive wastes. Various technologies have been applied to separate radioactive cesium from radioactive wastes, such as chemical precipitation, solvent extraction, membrane separation and adsorption. Crown ethers and calixarenes derivatives can selectively coordinate with cesium ions by ion-dipole interaction or cation-π interaction, which are promising extractants for cesium ions due to their promising coordinating structure. This review systematically summarized and analyzed the recent advances in the crown ethers and calixarenes derivatives for cesium separation, especially focusing on the adsorbents based on extractants for cesium removal from aqueous solution, such as the grafting coordinating groups (e.g. crown ether and calixarenes) and coordinating polymers (e.g. MOFs) due to their unique coordination ability and selectivity for cesium ions. These adsorbents combined the advantages of extraction and adsorption methods and showed high adsorption capacity for cesium ions, which are promising for cesium separation The key restraints for cesium separation, as well as the newest progress of the adsorbents for cesium separation were also discussed. Finally, some concluding remarks and suggestions for future researches were proposed.

Adsorption of hydrogen isotopes on graphene

  • Erica Wu;Christian Schneider ;Robert Walz ;Jungkyu Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4022-4029
    • /
    • 2022
  • We investigated the possibility of using graphene for control of hydrogen isotopes by exploring adsorption, reflection, and penetration of hydrogen isotopes on graphene using molecular dynamics. Reflection is the dominant interaction when hydrogen isotopes have low incident energy. Adsorption rates increase with increasing incident energy until 5 eV is reached. After 5 eV, adsorption rates decrease as incident energy increases. At incident energies greater than 5 eV, adsorption rates increase with the number of graphene layers. At low incident energies (<1 eV), no isotopic effects on interactions are observed since the predominant interaction is derived from the force of π electrons. Between 1 eV and 50 eV, heavier isotopes exhibit higher adsorption rates and lower reflection rates than lighter isotopes, due to the greater momentum of heavier isotopes. Adsorption rates are consistently higher when the incident angle of the impacting atoms is smaller between 0.5 eV and 5 eV. At higher energies (>5 eV), larger incident angles lead to higher reflection and lower penetration rates. At high incident energies (>5 eV), crumpled graphene has higher adsorption and lower penetration rates than wrinkled or unwrinkled graphene. The results obtained in this research study will be used to develop novel nanomaterials that can be employed for tritium control.