• Title/Summary/Keyword: π-π Interaction

Search Result 37, Processing Time 0.025 seconds

Liquid Chromatographic Resolution of Both $\pi$-Acidic and $\pi$-Basic Analytes on a Chiral Stationary Phase Derived from (S)-Tyrosine

  • 현명호;민정식
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.12
    • /
    • pp.1117-1123
    • /
    • 1996
  • Chiral recognition models for resolving π-basic N-acyl-α-(1-naphthyl)alkylamines and π-acidic N-(3,5-dinitrobenzoyl)-α-amino alkyl esters on a (S)-tyrosine-derived chiral stationary phase (CSP) containing both π-basic and π-acidic interaction site have been proposed. In the models, the CSP was supposed to interact with the analytes through the π-π interaction between the 3,5-dinitrophenyl or the 3,5-dimethylphenyl group of the CSP and the 1-naphthyl or the 3,5-dinitrophenyl group of the analyte, and through the hydrogen bonding interaction between the appropriate N-H hydrogen of the CSP and the appropriate carbonyl oxygen of the analyte. In this instance, the alkyl substituent of the pertinent enantiomer of the analyte was found to intercalate between the adjacent strands of the bonded phase and consequently control the trends of the separation factors.

Chiral Recognition Models of Enantiomeric Separation on Cyclodextrin Chiral Staionary Phases

  • 이선행;김병학;이영철
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.305-309
    • /
    • 1995
  • The enantiomeric separation of several amino acid derivatives by reversed-phase liquid chromatography using two (R)-and (S)-naphthylethylcarbamate-β-cyclodextrin(NEC-β-CD) bonded stationary phases was studied to illustrate the chiral recognition model of the enantiomeric separation. The retention and enantioselectivity of the chiral separations with (R)-and (S)-NEC-β-CD bonded phases were compared with similar separations with the native β-CD stationary phases. Especially, the enantioselectivity and elution orders between the derivatized amino acid enantiomers are carefully examined. These results can be illustrated by the chiral recognition models involving inclusion complexation, π-π interaction, and/or hydrophobic interaction. Inclusion complexation and hydrophobic interaction of the naphthyl group of the NEC moiety seem to be major chiral recognition components in the enantiomeric separation of 2,4-dinitrophenyl amino acids and dabsyl amino acids on (R)-and (S)-NEC-β-CD columns. For dansyl amino acids, only the inclusion complexation is the dominant factor. Three different chiral recognition models containing π-π interaction, inclusion complexation and hydrogen bonding were proposed for the separation of the 3,5-dinitrobenzoyl amino acid enantiomers, depending on the size and shape of amino acids.

Assessment of the Performance of B2PLYP-D for Describing Intramolecular π-π and σ-π Interactions

  • Choi, Tae-Hoon;Han, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4195-4198
    • /
    • 2011
  • Intramolecular ${\pi}-{\pi}$ and ${\sigma}-{\pi}$ interactions are omnipresent for numerous energetic and structural phenomena in nature, and the exact description of these nonbonding interactions plays an important role in the accurate prediction of the three-dimensional structures for numerous interesting molecular systems such as protein folding and polymer shaping. We have selected two prototype molecular systems for benchmarking calculations of intramolecular ${\pi}-{\pi}$ and ${\sigma}-{\pi}$ interactions. Accurately describing conformational energy of such systems requires highly elaborate but very expensive ab initio methods such as coupled cluster singles, doubles, and (triples) (CCSD(T)). Our calculations reveal a double hybrid density functional incorporating dispersion correction (B2PLYP-D) that agrees excellently with the CCSD(T) results, indicating that B2PLYP-D can serve as a practical method of choice.

Liquid Chromatographic Resolution of Racemic $\alpha$-Amino Acid Derivatives on an Improved $\pi$-Acidic Chiral Stationary Phase Derived from (S)-Leucine

  • 현명호;이승준;류재정
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1105-1109
    • /
    • 1998
  • A chiral stationary phase derived from (S)-N-(3,5-dinitrobenzoyl)leucine N-phenyl N-alkyl amide (CSP 2) was applied in separating the two enantiomers of various π-basic aromatic derivatives of leucine N-propyl amide in order to evaluate π-basic aromatic groups as an effective derivatizing group for the resolution of a-amino acids. Subsequently N-(3,5-dimethoxybenzoyl) group was found to be very effective as a π-basic aromatic derivatizing group. Based on these results, N-(3,5-dimethoxybenzoyl) derivatives of various a-amino N-propyl amides, N,N-diethyl amides and esters were resolved on the CSP derived from (S)-N-(3,5-dinitrobenzoyl) leucine N-phenyl N-alkyl amide (CSP 2) and the resolution results were compared with those on the CSP derived from (S)-N-(3,5-dinitrobenzoyl)leucine N-alkyl amide (CSP 1). The enantioselectivities exerted by CSP 2 were much greater than those exerted by CSP 1. In addition, racemic N-(3,5-dimethoxybenzoyl)-a-mino N,Ndiethyl amides were resolved much better than the corresponding N-(3,5-dimethoxybenzoyl)-a-mino N-propyl amides and esters on both CSPs. Based on these results, a chiral recognition mechanism utilizing the π-π donor-acceptor interaction and the two hydrogen bondings between the CSP and the analyte was proposed.

벤젠 이합체와 그 치환체의 양자역학을 통한 π-π interaction의 계산

  • Jo, Ji-Seong;Cho, Art.
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.385-397
    • /
    • 2014
  • 신약을 개발하거나 단백질 구조를 예측하는데 Molecular Mechanics (MM)의 방법을 사용한다. 하지만, MM 만으로는 자연현상에서 일어나는 결과를 정확하게 기술하기 어렵다. 본 연구는 기존의 MM 방법으로는 정확히 예측이 불가능한 비 공유결합 중 하나인 ${\pi}-{\pi}$ interaction을 양자역학 계산을 통해 정확한 예측이 가능한지 보았다. ${\pi}-{\pi}$ interaction 이란 생체 내, 의약 화합물에서 발견되는 결합이기 때문에, 단백질과 결합하는 구조의 예측이 중요하다고 할 수 있다. 본 실험은 ${\pi}-{\pi}$ interaction을 갖는 Sandwich, T shape, 그리고 Parallel displaced 세 가지 모형을 가지고 양자역학 계산을 수행하였다. 양자역학 계산은 DFT의 세가지 함수 M06_2X, M05_2X, B3LYP를 이용하였다. 실험결과에서 세 가지 함수가 각기 다른 결과를 보였는데, M06_2X의 결과에서 ${\pi}-{\pi}$ interaction을 더 정확하게 계산하였다. 이러한 결과를 바탕으로, 양자역학의 방법을 통해 MM에서는 예측이 불가능한 ${\pi}-{\pi}$ interaction을 계산 할 수 있고 이 부분을 고려하여 화합물 간의 결합구조를 예측을 향상시킬 수 있다.

  • PDF

Ab initio Studies on the Hetero Diels-Alder Cycloaddition

  • 이본수;김찬경;최정욱;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.849-853
    • /
    • 1996
  • Hetero Dieis-Alder reactions containing phosphorus atom at various positions of diene and dienophile as well as standard Dieis-Alder reaction between ethylene and cis-l,3-butadiene have been studied using ab initio method. Activation energy showed a good linear relationship with the FMO energy gap between diene and dienophile, which can be normally used to explain Dieis-Alder reactivity. Since π-bond cleavage and σ-bonds formation occur concertedly at the TS, geometrical distortion of diene and dienophile from the reactant to the transition state is the source of barrier. Based on the linear correlations between activation barrier and deformation energy, and between deformation energy and π-bond order change, it was concluded that the activation barrier arises mainly from the breakage of π-bonds in diene and dienophile. Stabilization due to favorable orbital interaction is relatively small. The geometrical distortions raise MO levels of the TS, which is the origin of the activation energy. The lower barrier for the reactions of phosphorus containing dienophile (reactions C, D, and E) can be explained by the electronegativity effect of the phosphorus atom.

Theoretical Studies of the Low-Lying Electronic States of Diazirine and 3,$3^{\prime} $-Dimenthyldiazirine

  • 한민수;조한국;정병서
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1281-1287
    • /
    • 1999
  • The low-lying electronic states of diazirine and 3,3'-dimethyldiazirine have been studied by high level ab initio quantum chemical methods. The equilibrium geometries of the ground state and the first excited singlet and triplet states have been optimized using the Hartree-Fock (HF) and complete active space SCF (CASSCF) methods, as well as using the Møller-Plesset second order perturbation (MP2) theory and the single configuration interaction (CIS) theory. It was found that the first excited singlet state is of 1 B1 symmetry resulting from the n- π* transition, while the first excited triplet state is of 3 B2 symmetry resulting from the π- π* transition. The harmonic vibrational frequencies have been calculated at the optimized geometry of each electronic state, and the scaled frequencies have been compared with the experimental frequencies available. The adiabatic and vertical transition energies from the ground electronic state to the low-lying electronic states have been estimated by means of multireference methods based on the CASSCF wavefunctions, i.e., the multiconfigurational quasidegenerate second order perturbation (MCQDPT2) theory and the CASSCF second-order configuration interaction (CASSCF-SOCI) theory. The vertical transition energies have also been calculated by the CIS method for comparison. The computed transition energies, particularly by MCQDPT2, agree well with the experimental observations, and the electronic structures of the molecules have been discussed, particularly in light of the controversy over the existence of the so-called second electronic state.

Structural and Magnetic Properties of Monomeric and Dimeric Copper(II) Complexes with Phenyl-N-[(pyridine-2-yl)methylene]methaneamide

  • Lee, Hong-Woo;Sengottuvelan, Nallathambi;Seo, Hoe-Joo;Choi, Jae-Soo;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1711-1716
    • /
    • 2008
  • The reaction of copper(II) chloride with phenyl-N-[(pyridine-2-yl)methylene]methaneamide (ppmma) leads to a new $\mu$ -chloro bridged dimeric [Cu(ppmma)$Cl_2$]$_2$ complex, whereas a reaction of copper(II) bromide with ppmma affords a monomeric Cu(ppmma)$Br_2$ complex. Both complexes have been characterized by X-ray crystallography and electronic absorption spectroscopy. The crystal structural analysis of [Cu(ppmma)$Cl_2$]$_2$ shows that the two Cu(II) atoms are bridged by two chloride ligands, forming a dimeric copper(II) complex and the copper ion has a distorted square-pyramidal geometry ($\tau$ = 0.2). The dimer units are held through a strong intermolecular $\pi-\pi$ interactions between the nearest benzyl rings. On the other hand, Cu(ppmma)Br2 displayed a distorted square planar geometry with two types of strong intermolecular π-π interaction. EPR spectrum of [Cu(ppmma)$Cl_2$]$_2$ in frozen glas s at 77 K revealed an equilibrium between the mononuclear and binuclear species. The magnetic susceptibilities data of [Cu(ppmma)$Cl_2$]$_2$ and Cu(ppmma)$Br_2$ follow the Curie-Weiss law. No significant intermolecular magnetic interactions were examined in both complexes, and magnetic exchange interactions are discussed on the basis of the structural features.