• Title/Summary/Keyword: β-Cyclodextrin

Search Result 84, Processing Time 0.017 seconds

Enhancement of β-cyclodextrin Production and Fabrication of Edible Antimicrobial Films Incorporated with Clove Essential Oil/β-cyclodextrin Inclusion Complex

  • Farahat, Mohamed G.
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.12-23
    • /
    • 2020
  • Edible films containing antimicrobial agents can be used as safe alternatives to preserve food products. Essential oils are well-recognized antimicrobials. However, their low water solubility, volatility and high sensitivity to oxygen and light limit their application in food preservation. These limitations could be overcome by embedding these essential oils in complexed product matrices exploiting the encapsulation efficiency of β-cyclodextrin. This study focused on the maximization of β-cyclodextrin production using cyclodextrin glucanotransferase (CGTase) and the evaluation of its encapsulation efficacy to fabricate edible antimicrobial films. Response surface methodology (RSM) was used to optimize CGTase production by Brevibacillus brevis AMI-2 isolated from mangrove sediments. This enzyme was partially purified using a starch adsorption method and entrapped in calcium alginate. Cyclodextrin produced by the immobilized enzyme was then confirmed using high performance thin layer chromatography, and its encapsulation efficiency was investigated. The clove oil/β-cyclodextrin inclusion complexes were prepared using the coprecipitation method, and incorporated into chitosan films, and subjected to antimicrobial testing. Results revealed that β-cyclodextrin was produced as a major product of the enzymatic reaction. In addition, the incorporation of clove oil/β-cyclodextrin inclusion complexes significantly increased the antimicrobial activity of chitosan films against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella Typhimurium, Escherichia coli, and Candida albicans. In conclusion, B. brevis AMI-2 is a promising source for CGTase to synthesize β-cyclodextrin with considerable encapsulation efficiency. Further, the obtained results suggest that chitosan films containing clove oils encapsulated in β-cyclodextrin could serve as edible antimicrobial food-packaging materials to combat microbial contamination.

Synthesis and Supramolecular Assembly of Ru(II)-Terpyridine Complexes linked with β-Cyclodextrin or Adamantyl Group (β-CD 또는 아다만탄이 결합된 루테늄(II)-터피리딘 착화합물의 제조와 초분자 조립)

  • Park, Dae-Rim;Chung, Yong-Chae;Choi, Kyung-Ho;Kim, Hyung-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.6
    • /
    • pp.526-535
    • /
    • 2007
  • Ru(II)-terpyridine complexes (8, 9, 11) linked with adamantyl or β-cyclodextrin moieties were synthesized and characterized based on their 1H and 13C NMR spectra as well as MS spectra. Ru(II)-terpyridine complexes (8, 11) linked with adamantyl moiety were readily dissolved in aqueous solution via encapsulation by β-cyclodextrin when they were mixed with an equimolar amount of β-cyclodextrin. In the similar way, the adamantane guest of the Ru(II)-terpyridine complexes (8, 11) were encapsulated by β-cyclodextrin moiety of the ruthenium complex 9 to afford supramolecular assemblies in aqueous environment. Formation of assemblies was corroborated by 1H NMR spectroscopy.

Effect of 2-hydroxypropyl-$\beta$-cyclodextrin on Biodegradation of High-Molecular Weight Polycyclic Aromatic Hydrocarbons by Novosphingobium pentaromtivorans US6-1 (Novosphingobium pentaromtivorans US6-1에 의한 고분자 방향족 탄화수소 생분해과정에서 2-hydroxypropyl-$\beta$-cyclodextrin의 영향)

  • Kang Ji-Hyun;Kwon Kae Kyoung;Kim Sang-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.146-151
    • /
    • 2004
  • Cyclodextrin compounds including 2-hydroxypropyl-β-cyclodextrin(β-HPCD) though to be accelerate the biodegradation of PAHs molecule by increasing solubility of PAHs through detaining PAHs in their's cavity. However, only this mechanism is not sufficient to explain the enhancement of PAHs biodegradation by β-HPCD. To find out possible additional role of β-HPCD in the enhancement of PAHs biodegradation, biodegradation rates of pyrene and benzo[a]pyrene (B[a]P) by a PAHs degrading Novosphingobium pentaromtivorans US6-1 strain were compared between with and without addition of β-HPCD. Changes of bacterial biomass were also measured simultaneously. In addition catechol 1,2-dioxygenase activity was determined depending on pre-incubation conditions. As a result, β-HPCD accelerate the degradation rate of pyrene by strain US6-1 and especially the β-HPCD amendment was obligatory for the degradation of B[a]p. Bacterial biomass was responsible for β-HPCD, however, PAHs compounds such as pyrene and B[a]P did not contribute to the bacterial biomass. Catechol 1,2-dioxygenase specific activity of US6-l cells pre-cultured in MM2 medium containing l% β-HPCD was higher than that of cells pre-cultured in ZoBell medium. The former case also showed similar activity compared to that of cells serially starved in MM2 medium after grown in ZoBell medium. These results imply that the presence of β-HPCD accelerate the degradation of PAHs by increasing the bacterial biomass as well as by increasing the water solubility of PAHs.

  • PDF

Spectrofluorimetric determination of trace Co(II) in aqueous samples with quinalizarin-β-cyclodextrin inclusion complex (Quinalizarin-β-cyclodextrin 내포 착물을 이용한 수용액 시료의 흔적량 Co(II)의 분광형광법 정량)

  • Baek, Hyeon Jung;Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.255-259
    • /
    • 2015
  • A technique on the determination of Co(II) in aqueous samples with quinalizarin-β-cyclodextrin inclusion complex was developed. The conditions such as pH of the sample solution, the concentration of quinalizarin and the concentration of β-CD were optimized to 11.3(±0.2), 1.2×10−6 M and 8.0×10−6 M, respectively. Under these optimum conditions, the calibration curve of Co(II) was obtained over concentration range of 5.0×10−9 ~ 1.2×10−7 M. The detection limit was 4.2×10−9 M (0.25 ng/mL). For validating this proposed technique, aqueous samples(stream water, reservoir water and tap water) were used. Recovery yields of 95~105% were obtained. The relative standard deviation(%) in aqueous samples were less than 7.0%. Based on experimental results, it is proposed that this technique can be applied to the practical determination of Co(II).

Study on Stabilization of Retinaldehyde using Drug-in-Cyclodextrinin-Liposome (DCL) for Skin Wrinkle Improvement (레틴알 안정화를 위한 사이클로덱스트린-리포좀에 관한 연구)

  • Ha, Ji Hoon;Choi, Hyeong;Hong, In Ki;Han, Sang-Kuen;Bin, Bum Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.77-85
    • /
    • 2022
  • Retinaldehyde (RA), vitamin A derivative, is an intermediate between retinol and retinoic acid and has an excellent wrinkle improving effect. In this study, Drug-in-cyclodextrin-in-liposome (DCL) was used to enhance the stability and skin penetration of RA. The complex of RA and hydroxypropyl-beta-cyclodextrin (HP-β-CD) was prepared by the freeze-drying method, and the presence or absence of inclusion of retinal was confirmed by UV-Vis spectrometer, FT-IR and SEM images. RA was captured in HP-β-CD about 95.6% on 1 : 15 (w/w). The retinal-HP-β-CD complex was encapsulated in liposomes using a homomixer and microfluidizer, with an average particle size of 215 ± 4.2 nm and a zeta potential of -31.2 ± 0.5 mv. In the evaluation of the degradation stability of RA, degradation rate of RA-HP-β-CD-liposomes in water was 1.8% higher than RA-liposome (5.8%), RA-HP-β-CD complex (9.7%) and RA alone (37.6%). RA cream (0.05% RA) including RA-HP-β-CD-liposomes was prepared for clinical test with wrinkle-improving efficacy and skin dermis denseness evaluated for 2 or 4 weeks. RA cream showed a significant wrinkle improving effect without skin irritation. In conclusion, it was confirmed that the double stabilization technology using the DCL system contribu tes to the effect of improving skin wrinkles by increasing the stabilization of retinal.

Efficient Synthesis of 1,3-Thiazole Derivatives from Arylidenethiosemicarbazones in the Presence of β-Cyclodextrin with Water (수용액과 β-Cyclodextrin 하에서 Arylidenethiosemicarbazone들로부터 1,3-Thiazole 유도체들의 효율적 합성)

  • Park, Kyung-Jin;Bae, Sun Kun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.326-329
    • /
    • 2007
  • 2-Arylidenehydrazinyl-4-arylthiazole derivatives (9a-f) were prepared by the in situ formation of ${\beta}$-cyclodextrin complex of 2,4'-dibromoacetophenone (8) in water followed by the addition of arylidenethiosemicarbazones (7a-f) in 70~88% yield. The structures of the compounds 9a-f were elucidated by IR and $^1H-NMR$ spectral data. The role of ${\beta}$-cyclodextrin appears to activate the compound 7 and 8 and promote the reaction to complete in reduced reaction time.

Molecular Modeling of the Chiral Recognition of Propranolol Enantiomers by a β-Cyclodextrin

  • Kim, Hyun-myung;Jeong, Karp-joo;Lee, Sang-san;Jung, Seun-ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.95-98
    • /
    • 2003
  • Enantioselectivity of the propranolol on β-cyclodextrin was simulated by molecular modeling. Monte Carlo (MC) docking and molecular dynamics (MD) simulations were applied to investigate the molecular mechanism of enantioselective difference of both enantiomeric complexes. An energetic analysis of MC docking simulations coupled to the MD simulations successfully explains the experimental elution order of propranolol enantiomers. Molecular dynamics simulations indicate that average energy difference between the enantiomeric complexes, frequently used as a measure of chiral recognition, depends on the length of the simulation time. We found that, only in case of much longer MD simulations, noticeable chiral separation was observed.

Spectrofluorometric determination of caffeine using acridine orange-β-cyclodextrin inclusion complex (Acridine orange-β-cyclodextrin 내포 착물을 이용한 카페인의 분광형광법 정량)

  • Park, Jong Hee;Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.353-356
    • /
    • 2013
  • A method on the determination of caffeine in beverage with acridiene orange-${\beta}$-cyclodextrin (CD) inclusion complex was developed. The conditions such as pH of the sample solution and concentration of acridine orange and ${\beta}$-CD were optimized to 12.0(${\pm}0.5$), $1.9{\times}10^{-6}M$ and $1.25{\times}10^{-3}M$, respectively. Under these optimum conditions, the calibration curve of caffeine was obtained over concentration range of $5{\times}10^{-5}{\sim}1.1{\times}10^{-3}M$. The detection limit was $1.0{\times}10^{-5}M$. The relative errors(%) in beverage samples were less than 5.0%.