• Title/Summary/Keyword: }kinase$

Search Result 4,541, Processing Time 0.037 seconds

PI3-Kinase and PDK-1 Regulate HDAC1-mediated Transcriptional Repression of Transcription Factor NF-κB

  • Choi, Yong Seok;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.241-246
    • /
    • 2005
  • PDK-1 activates PI3-kinase/Akt signaling and regulates fundamental cellular functions, such as growth and survival. NF-${\kappa}B$ is involved in the induction of a variety of cellular genes affecting immunity, inflammation and the resistance to apoptosis induced by some anti-cancer drugs. Even though the crucial involvement of the PI3-kinase/Akt pathway in the anti-apoptotic activation of NF-${\kappa}B$ is well known, the exact role of PDK-1 as well as PI3-kinase/Akt in NF-vactivation is not understood. Here we demonstrate that PDK-1 plays a pivotal role in transcriptional activation of NF-${\kappa}B$ by dissociating the transcriptional co-repressor HDAC1 from the p65 subunit of NF-${\kappa}B$. The association of CBP with p65 was not directly modulated by PDK-1 or by PI3-kinase. Etoposide activated NF-${\kappa}B$ through PI3-kinase/Akt, and the transcription activation domain (TAD) of p65 was further activated by wild-type PDK-1. Overexpression of a dominant negative PDK-1 mutant decreased etoposide-induced NF-${\kappa}B$ transcription and further down-regulated the ectopic HDAC1-mediated decrease in NF-${\kappa}B$ transcriptional activity. Thus activation of PDK-1 relieves the HDAC1-mediated repression of NF-${\kappa}B$ that may be related to basal as well as activated transcription by NF-${\kappa}B$. This effect may also explain the role of the PI3-kinase/PDK-1 pathway in the anti-apoptotic function of NF-${\kappa}B$ associated with the chemoresistance of cancer cells.

Comparison of Bradykinin- and Platelet-Derived Growth Factor-Induced Phosphoinositide Turnover in NIH 3T3 Cells

  • Lee, Kee-Ho;Ryu, Yong-Wun;Yoo, Young-Do;Bai, Dong-Hoon;Yu, Ju-Hyun;Kim, Chang-Min
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.549-554
    • /
    • 1996
  • Phosphoinositide turnover in response to platelet-derived growth factor, epidermal growth factor, and bradykinin was evaluated in NIH 3T3 cells. Platelet-derived growth factor and bradykinin induced a significant increase in incorporation of $^{32}P$ into phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol 4.5-bisphosphate ($PIP_2$) in serum-starved NIH 3T3 cells. However, epidermal growth factor increased incorporation of $^{32}P$ into these phosphoinositides by only a small amount. Stimulation with platelet-derived growth factor, not bradykinin, caused a rapid elevation of PI and PIP kinase activities that were maximally activated within 10 min. The maximal levels of their elevation in cells with plateletderived growth factor stimulation were 3.2-fold for PI kinase, and 2.1-fold for PIP kinase. Short term pretreatment of NIH 3T3 cells with phorbol 12-myristate 13-acetate, activator of protein kinase C. caused an approximately 60% decrease in platelet-derived growth factor-induced PI kinase activities, indicating the feedback regulation of phosphoinositide turnover by protein kinase C. These results suggest that although the enhancement of phosphoinositide turnover is a rapidly occurring response in platelet-derived growth factor- or bradykinin-stimulated NIH 3T3 cells, phosphoinositide kinases may be associated with initial signal transduction pathway relevant to platelet-derived growth factor but not to bradykinin.

  • PDF

Phosphorylation of $Ser^{246}$ Residue in Integrin-linked Kinase 1 by Serum- and Glucocorticoid-induced Kinase 1 is Required to Form a Protein-protein Complex with 14-3-3

  • Chun, Jae-Sun;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.9 no.3
    • /
    • pp.161-171
    • /
    • 2005
  • Integrin-linked kinase 1 (ILK1) regulates several protein kinases, including PKB/Akt kinase and glycogen synthase kinase ${\beta}$. ILK1 is also involved distinctively in the cell morphological and structural functions by interacting with the components of the extracellular matrix or integrin. According to the information of serum- and glucocorticoid-induced kinase 1 (SGK1) substrate specificity (R-X-R-X-X(S/T)-${\phi};{\phi}$ indicates a hydrophobic amino acid), two putative phosphorylation sites, $Thr^{181}\;and\;Ser^{246}$, were found in ILK1. We showed that ILK1 fusion protein and two fluorescein-labeled ILK1 peptides, $FITC-^{174}RTRPRNGTLN^{183}$ and $FITC-^{239}CPRLRIFSHP^{248}$, were phosphorylated by SGK1 in vitro. We also identified that 14-3-3 ${\theta}\;{\varepsilon}\;and\;{\xi}$, among several 143-3 isotypes $({\beta},\;{\gamma},\;{\varepsilon},\;{\eta},\;{\sigma},\;{\theta},\;{\tau}\;and\;{\xi})$ formed protein complex with ILK1 in COS-1 cells. Furthermore, the phosphorylation of $Ser^{246}$ by SGK1 induced the binding with 14-3-3. It was also demonstrated that 14-3-3-bound ILK1 has reduced kinase activity. Thus, these data suggest that SGK1 phosphorylates $Thr^{181}\;and\;Ser^{246}$ of ILK1 and the phosphorylation of its $Ser^{246}$ makes ILK1 bind to 14-3-3, resulting in the inhibition of ILK1 kinase activity.

Phosphoinositide 3-kinase regulates myogenin expression at both the transcriptional and post-transcriptional level during myogenesis

  • Woo, Joo-Hong;Kim, Min-Jeong;Kim, Hye-Sun
    • Animal cells and systems
    • /
    • v.14 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • It is well-established that phosphoinositide 3-kinase (PI3-kinase) regulates myogenesis by inducing transcription of myogenin, a key muscle regulatory factor, at the initiation of myoblast differentiation. In this study, we investigated the role of PI3-kinase in cells that have committed to differentiation. PI3-kinase activity increases during myogenesis, and this increase is sustained during the myogenic process; however, its function after the induction of differentiation has not been investigated. We show that LY294002, a PI3-kinase inhibitor, blocked myoblast fusion even after myogenin expression initially increased. In contrast to the inhibitory effects of LY294002 on myogenin mRNA levels during the initiation of differentiation, LY294002 blocked the accumulation of myogenin protein without affecting its mRNA level after differentiation was induced. Treatment with cycloheximide, a translation inhibitor, or actinomycin D, a transcription inhibitor, indicated that the stability of myogenin protein is lower than that of its mRNA. LY294002 inhibited the activities of several important translation factors, including eukaryotic elongation factor-2(eEF2), by altering their phosphorylation status. In addition, LY294002 blocked the incorporation of [$^{35}S$]methionine into newly synthesized proteins. Since myogenin has a relatively short half-life, LY294002-mediated inhibition of post-transcriptional processes resulted in a rapid depletion of myogenin protein. In summary, these results suggest that PI3-kinase plays an important role in regulating the expression of myogenin through post-transcriptional mechanisms after differentiation has been induced.

Sphigosine-1-Phosphate-Induced ERK Activation Protects Human Melanocytes from UVB-Induced Apoptosis

  • Kim, Dong-Seok;Kim, Sook-Young;Lee, Jai-Eun;Kwon, Sun-Bang;Joo, Young-Hyun;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.739-746
    • /
    • 2003
  • Ultraviolet B (UVB) is known to induce apoptosis in human melanocytes. Here we show the cytoprotective effect of sphingosine-1-phosphate (S1P) against UVB-induced apoptosis. We also show that UVB-induced apoptosis of melanocytes is mediated by caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, and that S1P prevents apoptosis by inhibiting this apoptotic pathway. We further investigated three major mitogen-activated protein (MAP) kinases after UVB irradiation. UVB gradually activated c-Jun N-terminal kinase (JNK) and p38 MAP kinase, while extracellular signal-regulated protein kinase (ERK) was inactivated transiently. Blocking of the p38 MAP kinase pathway using SB203580 promoted cell survival and inhibited the activation of caspase-3 and PARP cleavage. These results suggest that p38 MAP kinase activation may play an important role in the UVB-induced apoptosis of human melanocytes. To explain this cytoprotective effect, we next examined whether S1P could inhibit UVB-induced JNK and p38 MAP kinase activation. However, S1P was not found to have any influence on UVB-induced JNK or p38 MAP kinase activation. In contrast, S1P clearly stimulated the phosphorylation of ERK, and the specific inhibition of the ERK pathway using PD98059 abolished the cytoprotective effect of S1P. Based on these results, we conclude that the activation of p38 MAP kinase plays an important role in UVB-induced apoptosis, and that S1P may show its cytoprotective effect through ERK activation in human melanocytes.

Protein kinase와 cell cycle

  • 유일재
    • The Microorganisms and Industry
    • /
    • v.19 no.2
    • /
    • pp.2-10
    • /
    • 1993
  • 이 총론에서는 cell cycle의 조절에 관계하는 p34cdc kinase의 특성과 기질 그리고 cell cycle에서의 역할을 살펴보고, 또 cell cycle에서와 여러가지 세포내의 현상에 중요한 역할을 하는 것으로 알려진 casein kinase II의 특성과 기질 그리고 cell cycle에서의 역할을 살펴보고자 한다. 그리고 이런 효소들을 연구하는 데 필수적인 방법이나 시약들로 소개하고자 한다.

  • PDF

Antagonists of Phosphatidylinositol 3-Kinase Block Phosphorylation-Dependent Activation of the Leukocyte NADPH Oxidase in a Cell-Free System

  • Park, Jeen-Woo
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.182-187
    • /
    • 1997
  • The NADPH oxidase of phagocytes catalyzes the reduction of oxygen to $O_2^-$ at the expense of NADPH. The enzyme is dormant in resting neutrophils and becomes activated on stimulation. During activation, $p47^{phox}\;(\underline{ph}agocyte\;\underline{ox}idase\;factor)$, a cytosolic oxidase subunit, becomes extensively phosphorylated at a number of serines located between S303-S379. Oxidase activation can also be achieved by the addition of phosphorylated recombinant $p47^{phox}$ by protein kinase C in the cell-free system in the presence of $GTP{\gamma}S$. The cell-free activation is inhibited by wortmannin and LY294002. specific inhibitors of phosphatidylinositol 3kinase (PI 3-kinasel) These results indicate that PI 3-kinase may playa pivotal role in the activation of NADPH oxidase.

  • PDF

Insulin induces nuclear translocation of insulin receptor and tyrosine phosphorylation of nuclear proteins in osteoblast (조골세포에서 인슐린 수용체의 세포핵으로의 이동과 타이로신 인산화)

  • Seol, Ki-Chun;Kim, Sung-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.101-101
    • /
    • 2001
  • In the present study, we explored to determine if insulin has any effect on the nuclear translocation of insulin receptor and tyrosine phosphoryaltion of nuclear proteins in the UMR-106 cells. Significant amount of insulin receptors and IRS-1 proteins were detected in the nucleus. IRS-1 and PI$_3$-Kinase appeared to translocate to the nucleus in a time dependent manner. Tyrosine phosphorylation of a number of proteins including 180 KDa, 85 KDa protein in the nucleus was significantly stimulated by insulin, suggesting IRS-1 and PI$_3$-Klnase was activated in the nucleus by insulin treatment. In addition, p70 S6 Kinase, a downstream target of PI3-Kinase was transiently appeared in the nucleus by insulin and its activity was stimulated by insulin. These results suggest that the insulin signaling system containing insulin receptor, IRS-1, PI$_3$-Kinase and p70 S6 Kinase operates in the nucleus of osteoblast cells. The nuclear insulin-mediated tyrosine phosphorylation may play an essential role in the gene expression, differentiation and growth of osteoblast cells.

  • PDF

3,5-Bis(aminopyrimidinyl)indole Derivatives: Synthesis and Evaluation of Pim Kinase Inhibitory Activities

  • Lee, Jinho;More, Kunal N.;Yang, Seun-Ah;Hong, Victor S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2123-2129
    • /
    • 2014
  • Pim kinases are promising targets in the treatment of hematopoietic and solid cancers. Meridianin C was chosen as a starting point to discover novel pim kinase inhibitors. Using known pim kinase's structural information, aminopyrimidine was introduced to provide the hydrogen-bonding interactions with the conserved lysine residue in the ATP binding pocket of all three Pim kinases. Synthesized 3,5-bis(aminopyrimidinyl)indole derivatives showed pan-pim inhibitory activity. Aminoalkyl substituent was attached on the aminopyrimidine to further enhance the potency and physicochemical properties of compound. The research reveals a significative way of designing compounds with high potency and kinase selectivity for pan-pim kinases.