• 제목/요약/키워드: {\sigma}_Y$: Yield strength

검색결과 26건 처리시간 0.025초

도시철도 차량 차륜재의 다축 피로강도 평가 (Evaluation of Multiaxial Fatigue Strength of a Urban Railway Wheel Steel)

  • 안종곤;유인동;권석진;김호경
    • 한국안전학회지
    • /
    • 제27권2호
    • /
    • pp.1-6
    • /
    • 2012
  • Uniaxial and biaxial torsional fatigue tests were conducted on the samples extracted from urban railway wheel steel. Ultimate and yield strengths of the steel were 1027.7 MPa and 626 MPa, respectively. The uniaxial fatigue limit was 422.5 MPa, corresponding 67% of the ultimate tensile strength. The ratio of ${\tau}_e/{\sigma}_e$ was 0.63. Fatigue strength coefficient and exponent were 1319.5 MPa and 0.339, respectively. Maximum principal and equivalent strain were found to be adequate parameter to predict fatigue lifetime of the steel under multiaixal fatigue condition.

Ca$CN_2$ 첨가에 의한 AM60 마그네슘 합금의 결정립 미세화 및 기계적 성질 (Grain Refinement and Mechanical Properties of AM60 Mg Alloy by $CaCN_2$ Addition)

  • 엄정필;정승규;임수근;신희택;정득수
    • 한국주조공학회지
    • /
    • 제18권4호
    • /
    • pp.383-388
    • /
    • 1998
  • Effects of $CaCN_2$ addition on the grain refinement in the AM60 magnesium ingots were investigated. The effects of the $CaCN_2$ are estimated with different inoculation temperatures, inoculation contents, and holding time to find out the optimum condition. AM60 alloy was melted in the low carbon steel crucible by cylindrical electric furnace under an argon atmosphere. The melting and casting apparatus is specially designed for magnesium alloys. The grain size of AM60 magnesium alloy decreased significantly with an increase in $CaCN_2$ content and, at 0.8 wt% $CaCN_2$ or more, grain size becomes constant at about $85 {\mu}m$. The optimum condition was obtained in the 0.8 wt% $CaCN_2$ for holding molten metal of 30 min. at the temperature of $710^{\circ}C$. The tensile properties of AM60 magnesium alloys were improved due to grain refinement by addition of $CaCN_2$. In the optimum condition, the yield strength, tensile strength and elongation were ${\sigma}_{0.2}=107 MPa$, ${\sigma}_{T.S}=234 MPa$ and e=14.2%. The variation of stress with strain obeyed the relationship of the ${\sigma}=K{\varepsilon}^n$. The strain-hardening exponent, n and strength coefficient, K obtained in the 0.8 wt% $CaCN_2$ added AM 60 magnesium alloy were n=0.21 and K=390 MPa.

  • PDF

Investigation of residual stresses of hybrid normal and high strength steel (HNHSS) welded box sections

  • Kang, Lan;Wang, Yuqi;Liu, Xinpei;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.489-507
    • /
    • 2019
  • In order to obtain high bearing capacity and good ductility simultaneously, a structural column with hybrid normal and high strength steel (HNHSS) welded box section has been developed. Residual stress is an important factor that can influence the behaviour of a structural member in steel structures. Accordingly, the magnitudes and distributions of residual stresses in HNHSS welded box sections were investigated experimentally using the sectioning method. In this study, the following four box sections were tested: one normal strength steel (NSS) section, one high strength steel (HSS) section, and two HNHSS sections. Based on the experimental data from previous studies and the test results of this study, the effects of the width-to-thickness ratio of plate, yield strength of plate, and the plate thickness of the residual stresses of welded box sections were investigated in detail. A unified residual stress model for NSS, HSS and HNHSS welded box sections was proposed, and the corresponding simplified prediction equations for the maximum tensile residual stress ratio (${\sigma}_{rt}/f_y$) and average compressive residual stress ratio (${\sigma}_{rc}/f_y$) in the model were quantitatively established. The predicted magnitudes and distributions of residual stresses for four tested sections in this study by using the proposed residual stress model were compared with the experimental results, and the feasibility of this proposed model was shown to be in good agreement.

STS 301L 필렛 용접이음재의 피로설계에 관한 연구 (A Study on Fatigue Design of STS301L Fillet Welded Joint)

  • 백승엽
    • 대한기계학회논문집A
    • /
    • 제34권5호
    • /
    • pp.561-565
    • /
    • 2010
  • 용접부는 일반적으로 잘 알려져 있는 바와 같이, 외력에 의한 응력 집중원(stress concentration source)이 되는 것은 물론 용접과정에서의 입열(heat input)로 인한 성분과 조직의 변화에 의해 반복하중에 대한 피로강도(fatigue strength)가 모재의 그것에 비해 훨씬 떨어져서 피로균열(fatigue crack)의 발단이 되고 있다. 따라서, 본 연구에서는 실제로 철도차량에 적용되는 가스용접 이음재 가운데 대표적인 형상시편들을 재질별로 피로실험을 수행하여 피로하중범위-피로수명(${\Delta}P-N_f$) 관계를 도출하여 비교 평가하였다. 또한, 수치 해석적 유한요소법을 이용하여 용접이음재의 응력분포를 해석한 후, 용접이음부에 발생하는 최대주응력으로 (${\Delta}P-N_f$) 관계를 $\Delta\sigma-N_f$ 관계로 재정리하였다. 이상의 결과들을 바탕으로, 가스용접이 적용된 철도차량 차체의 경제적이고 합리적인 피로설계를 위한 기초정보로 사용하고자 하였다.

X-선 회절에 의한 SS41강의 피로파면해석 (X-ray diffraction study on fatigue fractured surface of SS41 Steel)

  • 오세욱;박수영;김기환;김태형
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.114-122
    • /
    • 1994
  • X-ray stress constant, K, was determined for the diffraction line of (211)plane by using Cr-K$\alpha$ radiation. K was -340.87 MPa/deg. Fatigue crack propagation tests of SS41 steel were conducted under stress ratios of 0.1, 0.3 and 0.5. The half-value breadth of X-ray diffraction profile was measured at and beneath the fracture surface. The half-value breadth, B, on the fracture surface was found to increase with increasing $K_max$. The value of B was influenced by stress ratio in SS41 steel. The half-value breadth took the maximum value at the borden of reversed plastic zone, while it approached to the initial (pre-fatigue) value near the boundary of monotonic plastic zone. The maximum depth of the plasticzone was evaluated on the basis of the half-value breadth distribution. The depth $\omega$$_y$ is related to $K_max$by the following equation : $\omega$$_y$ = $\alpha$($K_max$/$\sigma$$_y$$)^2$ where .sigma.$\sigma$$_y$ is the yield strength obtength obtained in tension test .alpha.is 0.136 for SS41 steel.

  • PDF

도시철도 차량 차륜재의 다축 피로강도 평가 (Evaluation of Multiaxial Fatigue Strength of a Urban Railway Wheel Steel)

  • 안종곤;유인동;권석진;손영진;김호경
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.621-629
    • /
    • 2011
  • Uniaxial and biaxial torsional fatigue tests were conducted on the samples extracted from urban railway wheel steel. Ultimate and yield strengths of the steel were 1027.7 MPa and 626 MPa, respectively. The uniaxial fatigue limit was 422.5 MPa, corresponding 67% of the ultimate tensile strength. The ratio of ${\tau}_e/{\sigma}_e$ was 0.63. Fatigue strength coefficient and exponent were 1319.5 MPa and 0.339, respectively. Maximum principal and equivalent strain were found to be adequate parameter to predict fatigue lifetime of the steel under multiaixal fatigue condition.

  • PDF

Zr-2.5Nb 압력관에서 Striation Spacing과 DHCV의 관계 (A Correlation of Striation Spacing and DHC Velocity in Zr-2.5Nb Tubes)

  • 최승준;안상복;박순삼;김영석
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1109-1115
    • /
    • 2004
  • The objective of this study is to elucidate what governs delayed hydride cracking (DHC) in Zr-2.5Nb tubes by correlating the striation spacings with DHCV(DHC Velocity). To this end, DHC tests were conducted on the compact tension specimens taken from the Zr-2.5Nb tubes at different temperatures ranging from 100 to $300^{\circ}C$ with a 3 to 6 data set at each test conditions. The compact tension specimens were electrolytically charged with 27 to 87 ppm H before DHC tests. After DHC tests, the striation spacings and DHCV were determined with the increasing the test temperature and yield strength. The striation spacing and DHCV increased as a function of yield $strength^2$ and the temperature. Since the plastic zone size ahead of the crack tip can be represented by ${\sim}(K_{IH}/{\sigma}_{Y})^2$, we conclude that the striation spacing is governed by the plastic zone size which in turn determines a gradient of hydrogen concentration at the crack tip. The relationship between the plastic zone size and the striation spacing was validated through a complimentary experiment using double cantilever beam specimens. Two main factors to govern DHCV of Zr-2.5Nb tubes are concluded to be hydrogen diffusion and a hydrogen concentration gradient at the crack tip that are controlled by temperature and yield strength, respectively. The activation energy of DHCV in the Zr-2.5Nb tubes is discussed on the basis of temperature dependency of hydrogen diffusion and the striation spacing.

고장력강 용접부의 해수중 부식피로균열 성장특성에 관한 연구 (A study on the characteristics of corrosion-fatigue-crack propagation in the welded parts of high tensile steels under sea water)

  • 김영식;박무창
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.113-122
    • /
    • 1987
  • Ships and offshore strrctures are exposed to the corrosive surroundings, and the extablishment of the design criteria and the elucidation on the influence by this environment are requested to maintain the safety and to demonstrate the function of the structure. In this paper, the fatigue-crack-growth behavior on the compact tension specimens of quenched, tempered HT80 grade steels and RA36 high tensile steels having a single edge fatigue cracked notch respectively, were investigated under the repeated tensile stress with constant stroke in sea water for the welded parts by shielded metal arc welding. Main results obtained are summerized as follows; 1. The fatigue-crack-growth rates da/dN in sea water appeared to be greater behavior than those in air environment at the same stress intensisy factor range $\DeltaK$. 2. The correlation data of da/dN$\DeltaK$ of the two kinds of high tensile steels in sea water showed no great difference, however, the correlation data of da/dN$\DeltaK/\sigma_y$($\sigma_y$ stands for yield strength of the material) showed that the fatigue-crack-growth behavior of RA36 plate is affected by active path corrosion(APC) mechanism, while that of HT80 grade plate is mainly affected by hydrogen embrittlement mechanism.

  • PDF

진공가스분무한 AZ31+1%MM합금 분말 압출재의 기계적 성질 (Mechanical Properties of Extruded Bars of Gas Atomized AZ31+1wt%MM Alloy Powders)

  • 김연욱;도달현
    • 한국주조공학회지
    • /
    • 제20권2호
    • /
    • pp.110-115
    • /
    • 2000
  • In this study, the powders of Mg-3wt%Al-1wt%Zn-1wt%MM alloy were produced under vacuum condition by the inert gas atomization and the rapidly solidified powders were consolidated by the vacuum hot extrusion. Then the structural change of powders during extrusion was investigated. The effects of misch metal addition to AZ31 on mechanical properties of extruded bars were also examined. During extrusion of the rapidly solidified powders, their dendrite structure was broken into fragments and remained as grains of 2 ${\mu}m$ size in extruded bar. The Mg-Al-Ce intermetallic compounds formed in the interdendritic regions of powders were broken finely, too. The yield stress, tensile strength and ductility obtained in as-extruded Mg-3wt%Al-1wt%Zn-1wt%MM alloy were ${\sigma}_{0.2}=325$ MPa, ${\sigma}_{T.S.}=417$ MPa and ${\varepsilon}=16.8%$. All of these improvements on mechanical properties result from the refined micostructure and second-phase dispersions.

  • PDF

고강도 강관말뚝의 항타후 구조성능 분석 (Structural Capacity of High Strength Steel Pipe Pile After Pile Driving)

  • 나승민;유한규
    • 대한토목학회논문집
    • /
    • 제31권6C호
    • /
    • pp.251-258
    • /
    • 2011
  • 강관말뚝은 오랫동안 다양한 깊은 기초에 적용되어 왔으나 최근 강재가격의 상승으로 균질한 품질, 큰 강성, 용이한 시공 등의 장점에도 불구하고 기술자들이 자유롭게 적용 못하고 있다. 그러므로 강관말뚝으로 시공할 경우에는 초기 항타후 계획고 이상에서 절단된 강관을 재활용할 수 있다면 공사비를 절감하는데에 기여할 수 있다. 이러한 사유로 인하여 시공자들은 항타후 절단된 강관말뚝을 새롭게 시공할 말뚝과 함께 시공하고자 하나 명확한 정량적인 항타후 강관말뚝의 거동특성의 부재 및 재활용을 위한 적절한 대응방법과 기준의 부재로 인하여 말뚝의 건전도 문제, 문제 발생시의 대응방법 부재 등이 실제 현장에서 종종 발생하고 있다. 본 연구에서는 신규 강관말뚝과 사용자 하중 또는 극한 하중을 받은 강관말뚝에 대하여 현장에서 수행한 말뚝 동재하시험과 실내에서의 피로시험, 인장시험, 샤르피 충격시험을 실시하여 그 결과를 비교분석하였다. 시험결과로부터 허용응력 수준의 항타응력이 발생한 사용 하중조건에서는 항복강도의 변화가 2% 이하이며 최대 허용항타응력($0.9{\sigma}_y$)을 항타횟수가 3000회까지 받은 극한 하중조건에서는 항복강도의 변화가 5% 이하인 것을 확인할 수 있다. 또한 각 변수의 민감도를 확인하기 위하여 통계분석을 실시하였다. 모든 실험결과로부터 강관말뚝의 재활용 가능여부에 대한 판단 기준은 항복강도의 변화 보다는 오히려 샤르피충격에너지, 용접부에서의 강도변화 및 품질관리, 강관의 단면 변화, 항타후 강관의 국부좌굴에 기인하는 것을 확인할 수 있었다.