• Title/Summary/Keyword: [Ti+Na] (K)-Substituted Tobermorite

Search Result 1, Processing Time 0.017 seconds

Hydrothermal Synthesis and Transition Metal Cations Exchange Characterization of Titanium and [Titanium+Alkali Metals] Substituted-11Å Tobermorites

  • El-Korashy, S.A.
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • Titanium and [titanium+Na(K)] substituted 11${\AA}$ tobermorites solids synthesized under hydrothermal conditions at 180$^{\circ}C$ exhibit cation exchange properties toward heavy transition metal cations, such as Fe$^{2+},\;Zn^{2+},\;Cd^{2+}\;and/or\;Pb^{2+}$. The amount of heavy metal cations taken up by these solids was found in the order: Fe$^{2+}>Zn^{2+}>Cd^{2+}>Pb^{2+}$, and reached maximum at 10% [Ti+K]-substituted tobermorite. The total cation exchange capacity of the 10% Ti+Na (K) - substituted tobermorites synthesized here range from 71 to 89 meq/100 g, and 50-56 meq/100g for Ti-substituted only. Results indicated that 10% [Ti+K] substitution exhibit cation exchange capacity more 2.4 times than the unsubstituted-tobermorite. This is due to the increase of the number of active sites on the exchangers. The incorporation of Ti and/or [Ti+Na(K)] in the lattice structure of synthesized tobermorites is due to exchange of Ti$^{4+}{\Leftrightarrow}2Ca^{2+}\;and/or\;Ti^{4+}+2Na^+(K^+){\Leftrightarrow}3Ca^{2+}$, respectively. The mechanism of Ti and [Ti+Na(K)] incorporations in the crystal lattice of the solids during synthesis and the heavy metal cations uptaken by these solids is studied.