• Title/Summary/Keyword: [15N]요소

Search Result 256, Processing Time 0.032 seconds

A Study on the Behavior of Surface-Applied Urea with $^{15}N$ Isotope Dilution Technique in Paddy Soil (논토양에서 중질소(N-15)를 이용한 표면시용 요소로부터 유래하는 질소의 행동에 관한 연구)

  • Lee, Sang-Mo;Yoo, Sun-Ho
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.277-286
    • /
    • 1994
  • The pot experiment using $^{15}N$ isotope dilution technique was carried out to calculate the balance of nitrogen of surface applied urea in the rice-soil system. The $^{15}N$ concentration was determined by stable isotope ratio mass spcetrometer (model: VG ISO-GAS MM622). In the pots with $^{15}N$ labeled urea application at the rates of 15 and 30 kg N/10a, the percentage of nitrogen derived from fertilizer (NDFF) in rice was higher at the rate of 30 kg N/10a (average 89%) than at the rate of 15 kg N/10a (average 64%). However, the recovery as percentage of fertilizer N by rice was higher at the rate of 15 kg N/10a (65.5%) than at the rate of 30 kg N/10a (54.2%). The percentage of the fertilizer N remained in extractable inorganic N form at the rates of 15 and 30 kg N/10a were $13.5%\;(NH_4-N\;5.53%,\;NO_3-N\;7.99%)$ and $16.5%\;(NH_4-N\;7.49%,\;NO_3-N\;8.98%)$ in unplanted soil, and $2.0%\;(NH_4-N\;0.63%,\;NO_3-N\;1.32%)$ and$2.3%\;(NH_4-N\;0.87%,\;NO_3-N\;1.40%)$ in soil planted to rice, respectively. The dominant form of inorganic-N in soil after harvest was $NO_3-N$ form rather than $NH_4-N$ form regardless of urea application rate or rice cultivation. The percentage of the fertilizer N remained in organic N form at the rates of 15 and 30 kg N/10a were 65.0 and 41.8% in unplanted soil, and 23.7 and 26.9% in soil planted to rice, respectively. In conclusion, the efficiency of surface-applied urea was greater at the rate 15 kg N/10a than at the rate of 30 kg N/10a.

  • PDF

A Study on the Utilization of Dietary [15N]urea in Cecal Ligated Chickens (맹장 결찰계(Cecal-ligated Chicken)를 이용한 [15N]urea의 이용성에 관한 연구)

  • Son, Jang-Ho
    • Korean Journal of Poultry Science
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • The effect of cecal ligation on the utilization of dietary [15N]urea in chickens fed 5 % protein diet plus urea were investigated. Nitrogen balance and utilization tended (P<0.01) to increase by cecal ligation. Total uric acid excretion was significantly decrease by (P<0.01) cecal ligation in chickens from origin of diet and urea (P<0.01). Excretion of ammonia was increased in chickens from origin of diet, where as it decreased in chickens an urea diet (P<0.01). Amount of urea nitrogen excretion from origin of urea was significantly decrease (P<0.01) by cecal ligation, but cecal ligated chicken fed 5% protein diet with urea showed 51.6% urea utilization. Result obtained in present study indicates that ceca is having beneficial role for urea utilization in chicken fed protein deficient diets, but ceca do not always positive role for nitrogen utilization.

Natural 15N Abundances of Corn Treated with Urea and Composted Pig Manure in a Pot Experiment (요소와 돈분퇴비 시용에 따른 포트 재배 옥수수의 질소동위원소 자연존재비 차이)

  • Choi, Woo-Jung;Lee, Sang-Mo;Kim, Kyoung-Cheol;Kim, Pan-Gun;Yoo, Ji-Hyeok;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.284-291
    • /
    • 2001
  • To study whether N isotope composition (${\delta}^{15}N$) of crop reflects the kind of fertilizer (chemical or organic) applied to field, a pot experiment was conducted. Corn (Zea mays L.) was cultivated under greenhouse conditions for 70 days. Composted pig manure and urea were applied at 0 and 0 (C0U0), at 0 and 300 (COU2), at 300 and 0 (C2U0) and at 150 and $150kg\;N\;ha^{-1}$ (C1U1), respectively. The ${\delta}^{15}N$ values of composted pig manure and urea were + 13.9‰ and -2.3‰, respectively. The ${\delta}^{15}N$ values of whole parts (roots + stems + leaves + grains) were + 12.7, + 12.9, + 14.0 and + 13.0‰ for C0U0, C0U2, C2U0 and C1U1 treatments, and were not significantly affected by the application of isotopically different N sources (P<0.05). However, leaves or grains showed significantly (P<0.05) different ${\delta}^{15}N$ values between treatments. The ${\delta}^{15}N$ values of leaves and grains were + 14.3 and + 16.2‰ for C2U0, +13.2 and +13.9‰ for C0U0, +10.1 and + 12.6‰ for C1U1 and +10.1 and +12.4‰ for C0U2 treatments. The different ${\delta}^{15}N$ values of corn from the values of N sources (compost and urea) applied to soil showed that the ${\delta}^{15}N$ values of corn were affected not only by the isotope composition of N source, but also by N pool mixing and isotope fractionation accompanying N transformation. This study suggests that although the ${\delta}^{15}N$ values of crop are not identical to the ${\delta}^{15}N$ values of N sources applied to fields, the application of isotopically different N sources such as compost and chemical fertilizer may result in qualitative difference in ${\delta}^{15}N$ values of crop.

  • PDF

Distribution of Inorganic N from Fertigated and Broadcast-applied 15N-Urea along Drip Irrigation Domain (점적관수시 관비와 표면시비된 중질소 표지요소의 행동비교)

  • Yoo, Sun-Ho;Jung, Kang-Ho;Ro, Hee-Myong;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.292-301
    • /
    • 2001
  • The objectives of this study were to measure the changes in soil moisture regimes and the distribution patterns of inorganic N derived from the fertigated $^{15}N$-labeled urea, and compare them with the results obtained from broadcast-applied soil under the same drip irrigation domain. In fertigated soil, a $^{15}N$-labeled urea solution of $117mg\;N\;L^{-1}$ was applied by surface drip irrigation for 4 weeks. In broadcast-applied soil, no the other hand, 4 g of $^{15}N$-labeled urea(1.87 g N) mixed thoroughly with 5 kg of soil was placed on the surface of packed soil. Soil water status was controlled by drip irrigation scheduled at soil matric potential of -50 kPa. A calibrated time-domain reflectometry probe was installed in the soil vertically 15 cm apart from a drip emitter to control drip irrigation. About 60% of urea-derived inorganic nitrogen was remained in the top zone between 0 and 10 cm depth of fertigated soil, while, most of the inorganic nitrogen (91%) was accumulated in the top zone of broadcast-applied soil. Of inorganic nitrogen derived from urea, the percentage of $NO_3{^-}$ was much higher for fertigation (99%) than for surface application (62%). The relatively lower recovery of urea-derived inorganic nitrogen of broadcast-applied urea-N (51%) than that of fertigated urea-N (89%) was attributable to enhanced $NH_3$ volatilization.

  • PDF

Factors Controlling the Losses of Urea through Ammonia Volatilization (암모니아 휘산에 의한 요소비료의 손실에 미치는 요인)

  • Kim, Su-Jung;Yang, Jae E.;Cho, Byong-Ok;Kim, Jeong-Je;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.77-82
    • /
    • 2007
  • Volatilization of ammonia from N fertilizer is the major mechanism of N losses that occur naturally in all soils and is influenced by numerous soils, environmental and N fertilizer management factors. Vegetables are often damaged by $NH_3$ gas volatilized from the high rates of N fertilizer. We determined the rate of $NH_3$ volatilization from urea applied to surface of the alluvial soil (coarse silty, mixed, mesic family of Dystric Fluventic Eutrochrepts, Ihyeon series) as affected by fertilizer management factors such as rate of urea application, irrigation schedule and temperature. The $NH_3$ volatilization was triggered about 3 d after urea application and reached at maximum level in general within 15 days. Cumulative amounts of 3.0, 4.4, and 8.0 kg of $NH_3$ N after 17 d were volatilized at application rates of 200, 400, and $600kg\;N\;ha^{-1}$, respectively, which were equivalent to the N losses of 15.0, 10.9, and 13.0% of N applied. Masses of N volatilization were 5, 21, 75 and $87kg\;NH_3\;N\;ha^{-1}$ at 5, 8, 22, and 28, respectively. Total amounts of 21.3, 21.2, and $16.6kg\;N\;ha^{-1}$ were volatilized at control, 5 and 10 mm water irrigation before fertilization, respectively. However, those at 5 mm irrigation after fertilization were only $10.44kg\;N\;ha^{-1}$. Results showed that urea loss can be avoided by incorporating with the recommended level, applying when temperatures are low or irrigating immediately to carry the urea into soil.

Effects of N. P. K and Organic Matters for 15-years Successive Application on Paddy Soil Properties. Plant Growth and Yield of Rice Plant (3요소 및 유기물의 연용이 답토양의 변화와 수도생육 및 수량에 미치는 영향)

  • 오윤진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.4
    • /
    • pp.431-438
    • /
    • 1983
  • Experiments were conducted to know the effects of 15 years successive application of fertilizers and organic matters on the soil properties, plant growth and yield of rice. Application of fertilizers and organic matters for 15 years in same plots were increased soil pH, OM, and CEC, but decreased $SiO_2$ and Ca content in paddy soil. Organic matter application for 15 years was increased OM about 0.5% compare to non-applied plot. Particulary lime application was increased soil pH, $SiO_2$, Ca and CEC in paddy soil. NPK+compost and NPK+straw application were increased number of panicles and number of spikelets per unit area, but decreased ripening ratio compare to NPK applied plot. Average grain yield for 15 years in the non-fertilized, -N, -P, -K, NPK+compost, NPK+straw and NPK+lime applied plot was 47, 51, 88, 95, 113, 117, and 106% of yield conpare to NPK applied plot, respectively.

  • PDF

Effect of Slurry Composting Bio-filtration (SCB) by Subsurface Drip Fertigation on Cucumber (Cucumis sativus L.) Yield and Soil Nitrogen Distribution in Greenhouse

  • Lim, Tae-Jun;Park, Jin-Myeon;Noh, Jae-Seung;Lee, Seong-Eun;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.253-259
    • /
    • 2013
  • The use of subsurface drip fertigation using slurry composting bio-filtration (SCB) as nitrogen (N) fertilizer source can be beneficial to improve fertilizer management decision. The objective of this study was to evaluate effects of SCB liquid fertilizer by subsurface drip fertigation on cucumber (Cucumis sativus L.) yield and soil nitrogen (N) distribution under greenhouse condition. Cucumber in greenhouse was transplanted on April $4^{th}$ and Aug $31^{st}$ in 2012. N sources were SCB and urea. Four N treatments with 3 replications consisted of control (No N fertilizer), SCB 0.5N + Urea 0.5N (50:50 split application), SCB 1.0N, Urea 1.0N. 100% of N recommendation rate from soil testing was denoted as 1.0N. The subsurface drip line and a tensiometer were installed at 30 cm soil depth. An irrigation was automatically started when the tensiometer reading was -15 kPa. The growth of cucumber at 85 days after transplanting was 5% higher in all N treatment than control. Semi-forcing culture produced more fruit yield than retarding culture. Fruit yields were 62.2, 76.3, 76.4, and 75.1 Mg $ha^{-1}$ for control, SCB 1.0N, Urea 1.0N, and SCB 0.5N + Urea 0.5N, respectively. Although fruit yields were similar under SCB 1.0N, Urea 1.0N, and SCB 0.5N + Urea 0.5N, 176 kg K $ha^{-1}$ can be over applied if cucumber is grown twice a year under SCB 1.0N that may result in K accumulation in soil. N uptake was 172, 209, 213, 207 kg $ha^{-1}$ for control, SCB 1.0N, Urea 1.0N, and SCB 0.5N + Urea 0.5N, respectively. N use efficiency was the highest (37%) at SCB 0.5N + Urea 0.5N under semi-forcing culture. Nitrate-N concentration in soil for all N treatments except control in semi-forcing culture was the highest between 15 and 30 cm soil depth at the 85 days after transplanting and between 0 and 15 cm soil depth after cucumber harvest. These results suggested that SCB 0.5N + Urea 0.5N can be used as an alternative N management for cucumber production in greenhouse if K accumulation is concerned.

Nitrification of the Soil Applied Urea for Winter Barley as Basal Dressing and Following Nitrate Release to the Environment (추파대맥(秋播大麥) 재배시 기비(基肥)로 시용(施用)한 요소(尿素)의 질산화(窒酸化)및 그에 따른 질산태질소(窒酸態窒素)의 환경(環境)에의 방출(放出))

  • Kim, Sok-Dong;Soh, Chang-Ho;Kwon, Yong-Woong;Lim, Ung-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.2
    • /
    • pp.112-120
    • /
    • 1993
  • The use of fertilizer N is essential for maximum economic yield of crops. Meanwhile, enrichment of $NO_3^-$in the environment has to be avoided. Winter barley crop has a short duration of growth before winter, but is used to receive N greater than 60 kg/ha at seeding. Experiments were performed to determine the quantitative aspect of the fate of soil applied urea N among the residual, leached, and uptaken by winter barley (cv. Olbori), and to evaluate the effect of soil temperature on nitrification. Four levels of urea (0, 40, 80, and 120 kg N/ha) was basal-dressed to Olbori. $NH_4^+$ appeared dominant in the soil until 40 days after seeding, whereas $NO_3^-$ did thereafter. Nitrification rate at $5^{\circ}C$ of soil temperature was 40 to 50% of that at $15^{\circ}C. Linear increases in the number of ammonia oxidizing and nitrite oxidizing bacteria of the soil was present as the level of urea fertilization was higher. Less than 60% of N applied at seeding was uptaken by winter barley until mid-March but 50% was lost from death of older barley leaves during overwintering. Thereby only 10% of the applied N remained in the barley in spring. Only 15% of the applied N was present in the rhizosphere. The 17 to 20% of the soil applied N leached out as $NO_3^-$ the rhizosphere. Nitrogen leaching during winter was estimated to be 16 and 20 kg/ha when the basal application level of urea fertilization was 80 and 120 kg/ha, respectively.

  • PDF

Nitrogen Recovery of Foliar Applied Urea by Satsuma Mandarins (요소 엽면시비에 따른 온주밀감의 질소회수율)

  • Kang, Young-Kil;U, Zang-Kual
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.132-139
    • /
    • 1999
  • A field experiment was conducted at Cheju from early March 1998 to early March 1999 to evaluate the effects of foliar applied urea on leaf N content and N recovery in satsuma mandarins (Citrus unshiu Marc.). Seven years old 'Okitsu Wase' trees received foliar spray of urea (22 or 43 g N $tree^{-1}yr^{-1}$) or soil application of urea (86 g N $tree^{-1}yr^{-1}$). 56% of N was applied in spring, 11% in summer and 33% in fall. There were seven trees per N treatment and two trees per N treatment received $^{15}N$-labeled urea in spring and summer to determine N recovery. There were no differences between the treatments for fruit yield and its quality. Nitrogen content of spring flush leaf blades up to early September was greater for trees received foliar spray comparing with soil application but was not greatly affected by any treatment after mid-November. The recovery of fertilizer N in various parts of trees receiving foliar spray of 22 g N $tree^{-1}yr^{-1}$ was greatest, followed by receiving foliar spray of 43 g N and soil application of 86 g N. The recovery of fertilizer N in tree was 29.2 and 17.7% for foliar spray of 22 and 43 g N $tree^{-1}yr^{-1}$, respectively and 8.0% for soil application of 86 g N $tree^{-1}yr^{-1}$. The recovery of fertilizer N in the upper 40 cm of soil was 50.3, 45.6, and 51.8% for foliar spray of 22 and 43 g N $tree^{-1}yr^{-1}$, and soil application of 86 g N $tree^{-1}yr^{-1}$ respectively. The total (tree, fallen leaves, winter weeds, and soil) recovery of fertilizer N was 81.8, 65.1, and 60.6% for foliar spray of 22 and 43 g N $tree^{-1}yr^{-1}$, and soil application of 86 g N $tree^{-1}yr^{-1}$, respectively.

  • PDF

Efficiency of Soil and Fertilizer Nitrogen in Relation to Rice Variety and Application Time, Using $^{15}N$ Labled Fertilizer -IV. Pot experiment for split application of $^{15}N-Urea$- (중질소(重窒素)를 이용(利用)한 수도품종(水稻品種) 및 시용시기(施用時期)에 따른 토양(土壤) 및 시비질소(施肥窒素)의 효율 -IV. $^{15}N$ 요소(尿素)의 분시(分施)폿드시험(試驗)-)

  • Park, Hoon;Kim, Ung-Joo
    • Applied Biological Chemistry
    • /
    • v.25 no.3
    • /
    • pp.150-154
    • /
    • 1982
  • Top-dressing pot experiment with $^{15}N$ urea was carried out by using three varieties. Two-split application was much better for Tongil line than 4-split. Fertilization efficiency (Fe), use efficiency (Eu) and absorbed fertilizer nitrogen efficiency (Ef) were much greater in 2-split than in 4-split. The order of Fe followed that of Ef. Grain yield and $^{15}N$ excess % among plant parts suggest that Tonsil line uptakes fertilizer nitrogen much in early stage and retranslocated well later. The order of soil nitrogen increment in plant per fertilizer nitrogen in plant $({\Delta}Ns/Nf)$ might be an index of soil nitrogen use efficiency due to fertilizer.

  • PDF