• Title/Summary/Keyword: [-1,1]

Search Result 591,305, Processing Time 0.474 seconds

Keyword Network Analysis for Technology Forecasting (기술예측을 위한 특허 키워드 네트워크 분석)

  • Choi, Jin-Ho;Kim, Hee-Su;Im, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.227-240
    • /
    • 2011
  • New concepts and ideas often result from extensive recombination of existing concepts or ideas. Both researchers and developers build on existing concepts and ideas in published papers or registered patents to develop new theories and technologies that in turn serve as a basis for further development. As the importance of patent increases, so does that of patent analysis. Patent analysis is largely divided into network-based and keyword-based analyses. The former lacks its ability to analyze information technology in details while the letter is unable to identify the relationship between such technologies. In order to overcome the limitations of network-based and keyword-based analyses, this study, which blends those two methods, suggests the keyword network based analysis methodology. In this study, we collected significant technology information in each patent that is related to Light Emitting Diode (LED) through text mining, built a keyword network, and then executed a community network analysis on the collected data. The results of analysis are as the following. First, the patent keyword network indicated very low density and exceptionally high clustering coefficient. Technically, density is obtained by dividing the number of ties in a network by the number of all possible ties. The value ranges between 0 and 1, with higher values indicating denser networks and lower values indicating sparser networks. In real-world networks, the density varies depending on the size of a network; increasing the size of a network generally leads to a decrease in the density. The clustering coefficient is a network-level measure that illustrates the tendency of nodes to cluster in densely interconnected modules. This measure is to show the small-world property in which a network can be highly clustered even though it has a small average distance between nodes in spite of the large number of nodes. Therefore, high density in patent keyword network means that nodes in the patent keyword network are connected sporadically, and high clustering coefficient shows that nodes in the network are closely connected one another. Second, the cumulative degree distribution of the patent keyword network, as any other knowledge network like citation network or collaboration network, followed a clear power-law distribution. A well-known mechanism of this pattern is the preferential attachment mechanism, whereby a node with more links is likely to attain further new links in the evolution of the corresponding network. Unlike general normal distributions, the power-law distribution does not have a representative scale. This means that one cannot pick a representative or an average because there is always a considerable probability of finding much larger values. Networks with power-law distributions are therefore often referred to as scale-free networks. The presence of heavy-tailed scale-free distribution represents the fundamental signature of an emergent collective behavior of the actors who contribute to forming the network. In our context, the more frequently a patent keyword is used, the more often it is selected by researchers and is associated with other keywords or concepts to constitute and convey new patents or technologies. The evidence of power-law distribution implies that the preferential attachment mechanism suggests the origin of heavy-tailed distributions in a wide range of growing patent keyword network. Third, we found that among keywords that flew into a particular field, the vast majority of keywords with new links join existing keywords in the associated community in forming the concept of a new patent. This finding resulted in the same outcomes for both the short-term period (4-year) and long-term period (10-year) analyses. Furthermore, using the keyword combination information that was derived from the methodology suggested by our study enables one to forecast which concepts combine to form a new patent dimension and refer to those concepts when developing a new patent.

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.

The Relationships among Perceived Value, Use-Diffusion, Loyalty of Mobile Instant Messaging Service (모바일 메신저 서비스의 지각된 가치, 사용-확산 그리고 충성도 간의 관계에 대한 연구)

  • Jo, Dong-Hyuk;Park, Jong-Woo;Chun, Hyun-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.193-212
    • /
    • 2011
  • Mobile instant messaging service is surfacing to an important keyword in the mobile market together with popularization of Smart phones. Mobile instant messaging service in Korea has become popular to the degree of 87.9% usages from total Smartphone holders, and it is expected that using populations will be more enlarged afterwards if considering a fact that its populations of Smartphone is continuously being increased after exceeding 10 million persons (Trend Monitor, June 2011). In the instant messaging market where competitions have been deepened day by day, raising customer's royalties will be the key for company's business survivals and goals of corporate marketing strategies. It could be said that understanding on which factors affect to customer retentions and royalties is very important. Specially, as changing status is being progressed very quickly in case of innovative mobile services like the instant messaging service, research necessities on how many do consumers use the services after accepting them, how much do consumers use them variously, and whether does it connect to long-term relations have been increased, but studies on such matters are in insufficient situations actually. Therefore, this study examined on which effects were affected to use-diffusion and loyalty factors from perceived customer vales' factors having been occurred after accepting the mobile instant messaging service, namely 'functional value', 'monetary value', 'emotional value', and 'social value'. Also, the study looked into what kind of roles do the service usage and using variety play to service's continued using intents as a loyalty index, recommending intents to others, and brand switching intents. And then the study laid the main purpose in trying to provide implications for enhancing customer securities and royalties on the mobile instant messaging service through research's results. The research hypotheses are as follows; H1: Perceived values will affect influences to royalties. H2: Use-Diffusion will affect influences to loyalty. H3: Perceived value will affect influences to loyalty. H4: The use-diffusion will play intermediating roles between perceived values and loyalty. Total 276 cases among collected 284 ones were used for the statistical analysis by SPSS ver. 15 package. Reliability, Factor analysis, regression were done. As the result of research, 'monetary value' and 'emotional value' affected to 'usage' among perceived value factors, and 'emotional value' was appeared as affecting the largest influence. Besides, the usage affected to constant-using intents and recommending intents to others, and using varieties were displayed as affecting to recommending intents to others. On the other hand, 'Using' and 'Using diversity' were appeared as not affecting to 'brand switching intentions'. Meanwhile, as the result of recognizing about effects of perceived values on the loyalty, it was appeared such like 'continued using intents' affected to'functional value', 'monetary value', and 'social value' first, and also 'monetary value', 'emotional value', and 'social value' affected to 'recommending intents to others'. On the other hand, it was shown such like only 'social value' affected influences to 'brand switching intents', and thus contrary results with the factor 'constant-using intents' were displayed. So, it seems that there are many applications to service provides who are worrying about marketing strategies for making consumer retains (constant-using) and new consumer's inductions (brand-switching intents). Finally, as a result of looking into intermediating roles of the use-diffusion factor in relations between conceived values and royalties at hypothesis 4, 'using' and 'using diversity' were displayed as affecting significant influences all together. Regarding to research result's implications, for expanding and promoting continued uses of the mobile instant messaging service by service providers: First, encouraging recognitions on the perceived value connected to users' service usage are necessary. Second, setting up user's use-diffusion strategies are required so as to enhance the loyalty after understanding a fact that use-diffusion patterns affecting to the service's loyalty are different. Finally, methods of raising customer loyalties and making constant relationships have to be grouped by analyzing on what are the customer value's factors that can satisfy users in competitive alterations.

Extracting Beginning Boundaries for Efficient Management of Movie Storytelling Contents (스토리텔링 콘텐츠의 효과적인 관리를 위한 영화 스토리 발단부의 자동 경계 추출)

  • Park, Seung-Bo;You, Eun-Soon;Jung, Jason J.
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.279-292
    • /
    • 2011
  • Movie is a representative media that can transmit stories to audiences. Basically, a story is described by characters in the movie. Different from other simple videos, movies deploy narrative structures for explaining various conflicts or collaborations between characters. These narrative structures consist of 3 main acts, which are beginning, middle, and ending. The beginning act includes 1) introduction to main characters and backgrounds, and 2) conflicts implication and clues for incidents. The middle act describes the events developed by both inside and outside factors and the story dramatic tension heighten. Finally, in the end act, the events are developed are resolved, and the topic of story and message of writer are transmitted. When story information is extracted from movie, it is needed to consider that it has different weights by narrative structure. Namely, when some information is extracted, it has a different influence to story deployment depending on where it locates at the beginning, middle and end acts. The beginning act is the part that exposes to audiences for story set-up various information such as setting of characters and depiction of backgrounds. And thus, it is necessary to extract much kind information from the beginning act in order to abstract a movie or retrieve character information. Thereby, this paper proposes a novel method for extracting the beginning boundaries. It is the method that detects a boundary scene between the beginning act and middle using the accumulation graph of characters. The beginning act consists of the scenes that introduce important characters, imply the conflict relationship between them, and suggest clues to resolve troubles. First, a scene that the new important characters don't appear any more should be detected in order to extract a scene completed the introduction of them. The important characters mean the major and minor characters, which can be dealt as important characters since they lead story progression. Extra should be excluded in order to extract a scene completed the introduction of important characters in the accumulation graph of characters. Extra means the characters that appear only several scenes. Second, the inflection point is detected in the accumulation graph of characters. It is the point that the increasing line changes to horizontal line. Namely, when the slope of line keeps zero during long scenes, starting point of this line with zero slope becomes the inflection point. Inflection point will be detected in the accumulation graph of characters without extra. Third, several scenes are considered as additional story progression such as conflicts implication and clues suggestion. Actually, movie story can arrive at a scene located between beginning act and middle when additional several scenes are elapsed after the introduction of important characters. We will decide the ratio of additional scenes for total scenes by experiment in order to detect this scene. The ratio of additional scenes is gained as 7.67% by experiment. It is the story inflection point to change from beginning to middle act when this ratio is added to the inflection point of graph. Our proposed method consists of these three steps. We selected 10 movies for experiment and evaluation. These movies consisted of various genres. By measuring the accuracy of boundary detection experiment, we have shown that the proposed method is more efficient.

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

Measuring the Economic Impact of Item Descriptions on Sales Performance (온라인 상품 판매 성과에 영향을 미치는 상품 소개글 효과 측정 기법)

  • Lee, Dongwon;Park, Sung-Hyuk;Moon, Songchun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.1-17
    • /
    • 2012
  • Personalized smart devices such as smartphones and smart pads are widely used. Unlike traditional feature phones, theses smart devices allow users to choose a variety of functions, which support not only daily experiences but also business operations. Actually, there exist a huge number of applications accessible by smart device users in online and mobile application markets. Users can choose apps that fit their own tastes and needs, which is impossible for conventional phone users. With the increase in app demand, the tastes and needs of app users are becoming more diverse. To meet these requirements, numerous apps with diverse functions are being released on the market, which leads to fierce competition. Unlike offline markets, online markets have a limitation in that purchasing decisions should be made without experiencing the items. Therefore, online customers rely more on item-related information that can be seen on the item page in which online markets commonly provide details about each item. Customers can feel confident about the quality of an item through the online information and decide whether to purchase it. The same is true of online app markets. To win the sales competition against other apps that perform similar functions, app developers need to focus on writing app descriptions to attract the attention of customers. If we can measure the effect of app descriptions on sales without regard to the app's price and quality, app descriptions that facilitate the sale of apps can be identified. This study intends to provide such a quantitative result for app developers who want to promote the sales of their apps. For this purpose, we collected app details including the descriptions written in Korean from one of the largest app markets in Korea, and then extracted keywords from the descriptions. Next, the impact of the keywords on sales performance was measured through our econometric model. Through this analysis, we were able to analyze the impact of each keyword itself, apart from that of the design or quality. The keywords, comprised of the attribute and evaluation of each app, are extracted by a morpheme analyzer. Our model with the keywords as its input variables was established to analyze their impact on sales performance. A regression analysis was conducted for each category in which apps are included. This analysis was required because we found the keywords, which are emphasized in app descriptions, different category-by-category. The analysis conducted not only for free apps but also for paid apps showed which keywords have more impact on sales performance for each type of app. In the analysis of paid apps in the education category, keywords such as 'search+easy' and 'words+abundant' showed higher effectiveness. In the same category, free apps whose keywords emphasize the quality of apps showed higher sales performance. One interesting fact is that keywords describing not only the app but also the need for the app have asignificant impact. Language learning apps, regardless of whether they are sold free or paid, showed higher sales performance by including the keywords 'foreign language study+important'. This result shows that motivation for the purchase affected sales. While item reviews are widely researched in online markets, item descriptions are not very actively studied. In the case of the mobile app markets, newly introduced apps may not have many item reviews because of the low quantity sold. In such cases, item descriptions can be regarded more important when customers make a decision about purchasing items. This study is the first trial to quantitatively analyze the relationship between an item description and its impact on sales performance. The results show that our research framework successfully provides a list of the most effective sales key terms with the estimates of their effectiveness. Although this study is performed for a specified type of item (i.e., mobile apps), our model can be applied to almost all of the items traded in online markets.

A Study on Automatic Classification Model of Documents Based on Korean Standard Industrial Classification (한국표준산업분류를 기준으로 한 문서의 자동 분류 모델에 관한 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.221-241
    • /
    • 2018
  • As we enter the knowledge society, the importance of information as a new form of capital is being emphasized. The importance of information classification is also increasing for efficient management of digital information produced exponentially. In this study, we tried to automatically classify and provide tailored information that can help companies decide to make technology commercialization. Therefore, we propose a method to classify information based on Korea Standard Industry Classification (KSIC), which indicates the business characteristics of enterprises. The classification of information or documents has been largely based on machine learning, but there is not enough training data categorized on the basis of KSIC. Therefore, this study applied the method of calculating similarity between documents. Specifically, a method and a model for presenting the most appropriate KSIC code are proposed by collecting explanatory texts of each code of KSIC and calculating the similarity with the classification object document using the vector space model. The IPC data were collected and classified by KSIC. And then verified the methodology by comparing it with the KSIC-IPC concordance table provided by the Korean Intellectual Property Office. As a result of the verification, the highest agreement was obtained when the LT method, which is a kind of TF-IDF calculation formula, was applied. At this time, the degree of match of the first rank matching KSIC was 53% and the cumulative match of the fifth ranking was 76%. Through this, it can be confirmed that KSIC classification of technology, industry, and market information that SMEs need more quantitatively and objectively is possible. In addition, it is considered that the methods and results provided in this study can be used as a basic data to help the qualitative judgment of experts in creating a linkage table between heterogeneous classification systems.

Cafeteria Users' Preference for an Indoor Green-wall in a University Dining Hall (실내 벽면녹화 공간 이용자 행태연구 - 대학구내식당 녹화 칸막이 선호를 중심으로 -)

  • Kim, Hae-Ryung;Ahn, Tong-Mahn
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.62-72
    • /
    • 2015
  • The objective of this research is to investigate the different aspects in which users positively identify with indoor green walls and the influences that it has on usage behaviors. Under the hypothesis that public space users prefer locations with green walls, the effect on their behavior was observed. After installing indoor green walls, behavioral observations and questionnaires were carried out to analyze green wall preferences. The observation experiment was carried out for a total of 8 days in order to see what influences the preferences for of indoor green walls had on usage behaviors and compare a control group with an experimental group that experienced a green wall. The usage time data were put into an SPSS statistics program and used to run an independent sample t-test. The questionnaire was carried out for two days from March 1st to 2nd 2014 after the observation was completed, and was done by 224 users of the two areas. The results from the experiment are as follows. First, comparisons between the total usage time of seats adjoined to partitions in both the green walled area and the partitioned area showed that there was no preference for indoor green walls. Second, the results appeared to show a higher percentage of women users in the green walled area, compared to the original partitioned area. Third, it showed that partitions and plants did not have any influence on seat choices. Fourth, the questionnaire showed preferences for indoor green walls. Out of the 94 people who sat in the partitioned area, 11.7% answered that they wanted to sit in the green walled area, they couldn't due to the lack of available seats. Furthermore, out of the 130 people who sat in the green walled area, 24.6% said they chose the seat because of their preference for the green wall. Although 64.3% of users of the two areas said that they would choose the green walled area if under the same circumstances, the behavior observation did not reflect this.

The Image of Changgyeongwon and Culture of Pleasure Grounds during the Japanese Colonial Period (일제강점기 창경원의 이미지와 유원지 문화)

  • Kim, Jeoung-Eun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.1-15
    • /
    • 2015
  • Changgyeongwon emerged as pleasure grounds following the creation of a museum, zoo and botanical garden in Changgyeonggung Palace during the Japanese colonial period. Pleasure grounds offer space for entertainment and have maintained the image of a paradise apart from reality. This study examined the creation process of pleasure grounds within a royal palace and the following spatial changes. By analyzing the image of Changgyeongwon as an artificial paradise, this study explored its landscape and cultural aspects. Literature reviews on the intention and process showed that the Changgyeongwon pleasure grounds were created as a 'royal garden' for the amusement of Sunjong, as well as 'public pleasure grounds' in the process of colonization. It was one of the first public spaces open to everyone who could afford the entrance fee. The layout of Changgyeongwon was studied by a comparison and analyzation of modern plans and photographs. It was composed of the central museum zone, northern botanical garden zone, and southern zoological garden zone. A conservatory and greenhouse to exhibit and maintain tropical plants were intensively built in the botanical garden zone while an aviary was created on the zoo pond. In the vicinity of the aviary a vivarium was constructed. Museum exhibition facilities included a main building as well as existing buildings, and a western flower garden was created between the buildings. Space for children including a playground and horse-riding course were created in the 1930's. The paradisiacal image and pleasure grounds culture of Changgyeongwon were studied as follows. Firstly, it shows that Changgyeongwon's paradisiacal image where rare animals and exotic plants were open to the public was promoted by the zoo and botanical garden. This led to the creation of new popular leisure activities such as flower appreciation and animal watching. Secondly, Changgyeongwon offered an urban leisure space, symbolizing the 'non-urban nature within the city' where the urban residents could escape from the daily routine. Thirdly, Changgyeongwon was known for its 'fantastic night landscape' by its night opening during the cherry blossom season. This cherry blossom viewing at night sadly degenerated by various shows and drinking, and as a result, an image of a deviant paradise was given to Changgyeongwon. Changgyeongwon contributed to creating a new space with its diverse facilities, and the public embraced the urban culture through experiences of pleasure and entertainment.

The Construction Direction of the ROK NAVY for the Protection of Marine Sovereignty (국가의 해양주권 수호를 위한 한국해군의 전력건설 방향)

  • Shin, In-Kyun
    • Strategy21
    • /
    • s.30
    • /
    • pp.99-142
    • /
    • 2012
  • Withe increased North Korea's security threats, the South Korean navy has been faced with deteriorating security environment. While North Korea has increased asymmetric forces in the maritime and underwater with the development of nuclear weapons, and China and Japan have made a large investment in the buildup of naval forces, the power of the Pacific fleet of the US, a key ally is expected to be weakened. The biggest threat comes from China's intervention in case of full-scale war with North Korea, but low-density conflict issues are also serious problems. North Korea has violated the Armistice Agreement 2,660 times since the end of Korean War, among which the number of marine provocations reaches 1,430 times, and the tension over the NLL issue has been intensifying. With tension mounting between Korea and Japan over the Dokdo issue and conflict escalating with China over Ieo do Islet, the US Navy has confronted situation where it cannot fully concentrate on the security of the Korean peninsula, which leads to need for strengthening of South Korea's naval forces. Let's look at naval forces of neighboring countries. North Korea is threatening South Korean navy with its increased asymmetric forces, including submarines. China has achieved the remarkable development of naval forces since the promotion of 3-step plan to strengthen naval power from 1989, and it now retains highly modernized naval forces. Japan makes an investment in the construction of stat of the art warship every year. Since Japan's warship boasts of its advanced performance, Japan's Maritime Self Defense Force is evaluated the second most powerful behind the US Navy on the assumption that submarine power is not included in the naval forces. In this situation, naval power construction of South Korean navy should be done in phases, focusing on the followings; First, military strength to repel the energy warship quickly without any damage in case of battle with North Korea needs to be secured. Second, it is necessary to develop abilities to discourage the use of nuclear weapons of North Korea and attack its nuclear facilities in case of emergency. Third, construction of military power to suppress armed provocations from China and Japan is required. Based on the above naval power construction methods, the direction of power construction is suggested as follows. The sea fleet needs to build up its war potential to defeat the naval forces of North Korea quickly and participate in anti-submarine operations in response to North Korea's provocations. The task fleet should be composed of 3 task flotilla and retain the power to support the sea fleet and suppress the occurrence of maritime disputes with neighboring countries. In addition, it is necessary to expand submarine power, a high value power asset in preparation for establishment of submarine headquarters in 2015, develop anti-submarine helicopter and load SLAM-ER missile onto P-3C patrol aircraft. In case of maine corps, division class military force should be able to conduct landing operations. It takes more than 10 years to construct a new warship. Accordingly, it is necessary to establish plans for naval power construction carefully in consideration of reality and future. For the naval forces to safeguard maritime sovereignty and contribute to national security, the acquisition of a huge budget and buildup of military power is required. In this regard, enhancement of naval power can be achieved only through national, political and military understanding and agreement. It is necessary to let the nation know that modern naval forces with improved weapon system can serve as comprehensive armed forces to secure the command of the sea, perform defense of territory and territorial sky and attack the enemy's strategic facilities and budget inputted in the naval forces is the essential source for early end of the war and minimization of damage to the people. If the naval power construction is not realized, we can be faced with a national disgrace of usurpation of national sovereignty of 100 years ago. Accordingly, the strengthening of naval forces must be realized.

  • PDF