• Title/Summary/Keyword: L-Asparaginase

Search Result 3, Processing Time 0.018 seconds

A Newly Identified Glutaminase-Free L-Asparaginase (L-ASPG86) from the Marine Bacterium Mesoflavibacter zeaxanthinifaciens

  • Lee, Su-Jin;Lee, Youngdeuk;Park, Gun-Hoo;Umasuthan, Navaneethaiyer;Heo, Soo-Jin;Zoysa, Mahanama De;Jung, Won-Kyo;Lee, Dae-Won;Kim, Hanjun;Kang, Do-Hyung;Oh, Chulhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1115-1123
    • /
    • 2016
  • L-Asparaginase (E.C. 3.5.1.1) is an enzyme involved in asparagine hydrolysis and has the potential to effect leukemic cells and various other cancer cells. We identified the L-asparaginase gene (L-ASPG86) in the genus Mesoflavibacter, which consists of a 1,035 bp open reading frame encoding 344 amino acids. Following phylogenetic analysis, the deduced amino acid sequence of L-ASPG86 (L-ASPG86) was grouped as a type I asparaginase with respective homologs in Escherichia coli and Yersinia pseudotuberculosis. The L-ASPG86 gene was cloned into the pET-16b vector to express the respective protein in E. coli BL21 (DE3) cells. Recombinant L-asparaginase (r-L-ASPG86) showed optimum conditions at 37-40℃, pH 9. Moreover, r-L-ASPG86 did not exhibit glutaminase activity. In the metal ions test, its enzymatic activity was highly improved upon addition of 5 mM manganese (3.97-fold) and magnesium (3.35-fold) compared with the untreated control. The specific activity of r-L-ASPG86 was 687.1 units/mg under optimum conditions (37℃, pH 9, and 5 mM MnSO4).

Anticancer Activity of Extremely Effective Recombinant L-Asparaginase from Burkholderia pseudomallei

  • Darwesh, Doaa B.;Al-Awthan, Yahya S.;Elfaki, Imadeldin;Habib, Salem A.;Alnour, Tarig M.;Darwish, Ahmed B.;Youssef, Magdy M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.551-563
    • /
    • 2022
  • L-asparaginase (E.C. 3.5.1.1) purified from bacterial cells is widely used in the food industry, as well as in the treatment of childhood acute lymphoblastic leukemia. In the present study, the Burkholderia pseudomallei L-asparaginase gene was cloned into the pGEX-2T DNA plasmid, expressed in E. coli BL21 (DE3) pLysS, and purified to homogeneity using Glutathione Sepharose chromatography with 7.26 purification fold and 16.01% recovery. The purified enzyme exhibited a molecular weight of ~33.6 kDa with SDS-PAGE and showed maximal activity at 50℃ and pH 8.0. It retained 95.1, 89.6%, and 70.2% initial activity after 60 min at 30℃, 40℃, and 50℃, respectively. The enzyme reserved its activity at 30℃ and 37℃ up to 24 h. The enzyme had optimum pH of 8 and reserved 50% activity up to 24 h. The recombinant enzyme showed the highest substrate specificity towards L-asparaginase substrate, while no detectable specificity was observed for L-glutamine, urea, and acrylamide at 10 mM concentration. THP-1, a human leukemia cell line, displayed significant morphological alterations after being treated with recombinant L-asparaginase and the IC50 of the purified enzyme was recorded as 0.8 IU. Furthermore, the purified recombinant Lasparaginase improved cytotoxicity in liver cancer HepG2 and breast cancer MCF-7 cell lines, with IC50 values of 1.53 and 18 IU, respectively.

Characterization of L-asparaginase-producing Trichoderma spp. Isolated from Marine Environments

  • Woon-Jong, Yu;Dawoon, Chung;Yong Min, Kwon;Seung Sub, Bae;Eun-Seo, Cho;Hye Suck, An;Grace, Choi
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.121-128
    • /
    • 2022
  • L-asparaginase (ASNase) is a therapeutic enzyme used to treat acute lymphoblastic leukemia. Currently, the most widely used ASNases are originated from bacteria. However, owing to the adverse effects of bacterial ASNases, new resources for ASNase production should be explored. Fungal enzymes are considered efficient and compatible resources of natural products for diverse applications. In particular, fungal species belonging to the genus Trichoderma are well-known producers of several commercial enzymes including cellulase, chitinase, and xylanase. However, enzyme production by marine-derived Trichoderma spp. remains to be elucidated. While screening for extracellular ASNase-producing fungi from marine environments, we found four strains showing extracellular ASNase activity. Based on the morphological and phylogenetic analyses using sequences of translation elongation factor 1-alpha (tef1α), the Trichoderma isolates were identified as T. afroharzianum, T. asperellem, T. citrinoviride, and Trichoderma sp. 1. All four strains showed different ASNase activities depending on the carbon sources. T. asperellem MABIK FU00000795 showed the highest ASNase value with lactose as a carbon source. Based on our findings, we propose that marine-derived Trichoderma spp. are potential candidates for novel ASNase production.