• Title/Summary/Keyword: , LDAPS

Search Result 58, Processing Time 0.025 seconds

The Sensitivity Analyses of Initial Condition and Data Assimilation for a Fog Event using the Mesoscale Meteorological Model (중규모 기상 모델을 이용한 안개 사례의 초기장 및 자료동화 민감도 분석)

  • Kang, Misun;Lim, Yun-Kyu;Cho, Changbum;Kim, Kyu Rang;Park, Jun Sang;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.567-579
    • /
    • 2015
  • The accurate simulation of micro-scale weather phenomena such as fog using the mesoscale meteorological models is a very complex task. Especially, the uncertainty arisen from initial input data of the numerical models has a decisive effect on the accuracy of numerical models. The data assimilation is required to reduce the uncertainty of initial input data. In this study, the limitation of the mesoscale meteorological model was verified by WRF (Weather Research and Forecasting) model for a summer fog event around the Nakdong river in Korea. The sensitivity analyses of simulation accuracy from the numerical model were conducted using two different initial and boundary conditions: KLAPS (Korea Local Analysis and Prediction System) and LDAPS (Local Data Assimilation and Prediction System) data. In addition, the improvement of numerical model performance by FDDA (Four-Dimensional Data Assimilation) using the observational data from AWS (Automatic Weather System) was investigated. The result of sensitivity analysis showed that the accuracy of simulated air temperature, dew point temperature, and relative humidity with LDAPS data was higher than those of KLAPS, but the accuracy of the wind speed of LDAPS was lower than that of KLAPS. Significant difference was found in case of relative humidity where RMSE (Root Mean Square Error) for LDAPS and KLAPS was 15.7 and 35.6%, respectively. The RMSE for air temperature, wind speed, and relative humidity was improved by approximately $0.3^{\circ}C$, $0.2m\;s^{-1}$, and 2.2%, respectively after incorporating the FDDA.

Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula (한반도 호우유형의 중규모 특성 및 예보 가이던스)

  • Kim, Sunyoung;Song, Hwan-Jin;Lee, Hyesook
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.463-480
    • /
    • 2019
  • This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).

Application and Accuracy Improvement of Numerical Weather Prediction Data for Rainfall and Flood Forecasting (강우 및 홍수 예측을 위한 수치예보자료의 적용 및 정확도 개선)

  • Moon, Hyejin;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.10-10
    • /
    • 2018
  • 기후변화로 인한 집중호우의 빈도 및 강도가 증가하여 치수 구조물의 설계 홍수 빈도를 초과하는 피해가 발생하고 있다. 본 연구에서는 이러한 침수 피해를 저감하기 위해 수치예보자료를 활용한 홍수 예 경보시스템의 적용성을 비교 평가하였다. 수치예보자료는 국내 기상청에서 제공하는 국지예보모델(LDAPS)과 일본 기상청의 중규모모델(Meso-scale Model ; MSM)을 이용하였으며, 남강댐 유역 내의 산청 유역에 대해 태풍 및 정체 전선 등 3 개의 강우사상을 선정하였다. 강우유출 해석에는 분포형 수문 모형인 KWMSS(Kinematic Wave Method for Subsurface and Surface)를 이용하였다. 그 결과, LDAPS와 MSM 모두 강우발생 유무를 잘 재현하였다. 특히, 광역적 강우인 태풍사상에 대해 강우 예측에서 비교적 높은 정확도를 나타내었다. 강우 예측의 정확도 향상을 위해 강우장의 공간 변위를 고려하여 앙상블 강우 분포를 적용한 결과, 강우 예측의 정확도가 향상되는 것으로 나타났다. 홍수 예측의 경우 두 수치예보자료 모두 유출 패턴을 잘 재현하였다. 앙상블 홍수 예측 결과, 단일 강우 자료를 통한 홍수 예측에서의 예측 불확실성을 개선하는 것으로 나타났다. 3개의 강우 사상에 대해 MSM의 예측 결과가 LDAPS의 예측 결과보다 비교적 높은 상관관계를 나타내었다. 본 연구를 통해 강우 및 홍수 예측에 수치예보자료의 적용 가능성이 있다고 판단되며, 홍수 예 경보의 기초자료로 활용성이 있다고 판단된다.

  • PDF

CFD Simulations of the Trees' Effects on the Reduction of Fine Particles (PM2.5): Targeted at the Gammandong Area in Busan (수목의 초미세먼지(PM2.5) 저감 효과에 대한 CFD 수치 모의: 부산 감만동 지역을 대상으로)

  • Han, Sangcheol;Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.851-861
    • /
    • 2022
  • In this study, we analyzed the effects of trees planted in urban areas on PM2.5 reduction using a computational fluid dynamics (CFD) model. For realistic numerical simulations, the meteorological components(e.g., wind velocity components and air temperatures) predicted by the local data assimilation and prediction system (LDAPS), an operational model of the Korea Meteorological Administration, were used as the initial and boundary conditions of the CFD model. The CFD model was validated against, the PM2.5 concentrations measured by the sensor networks. To investigate the effects of trees on the PM2.5 reduction, we conducted the numerical simulations for three configurations of the buildings and trees: i) no tree (NT), ii) trees with only drag effect (TD), and iii) trees with the drag and dry-deposition effects (DD). The results showed that the trees in the target area significantly reduced the PM2.5 concentrations via the dry-deposition process. The PM2.5 concentration averaged over the domain in DD was reduced by 5.7 ㎍ m-3 compared to that in TD.

Sensitivity Evaluation of Physics and Initial Condition of WRF for Ultra Low Altitude Wind Prediction (초저고도 바람예측을 위한 WRF의 물리과정 및 초기조건 민감도 평가)

  • Kwon, JaeIl;Kim, Ki-Young;Ku, SungKwan;Hong, SeokMin
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.487-494
    • /
    • 2019
  • Recently, interest in and use of drones is increasing. In this study, to provide accurate wind prediction at ultra low altitudes of 150 meters or below, the sensitivity of the physical process parameterization and initial conditions was assessed to select the optimal physical process and initial conditions. For this purpose, GFS and LDAPS data were used as initial and boundary conditions, and 7 experiments were constructed using a combination of PBL schemes such as YSU, RUC, ACM2, and LSM such as Noah, RUC, and Pleim. The experiment conducted for 1 month in April 2018. As a result, the RUC-YSU physical process combination using the GFS initial data showed the best performance. This study is meaningful in establishing an optimal modeling method for ultra low altitude wind prediction through experiments using different initial conditions and combination of physical processes.

Uncertainty investigation and mitigation in flood forecasting

  • Nguyen, Hoang-Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.155-155
    • /
    • 2018
  • Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).

  • PDF

An Analysis of Observed and Simulated Wind in the Snowfall Event in Yeongdong Region on 8 February 2020 (2020년 2월 8일 영동지역 강설 사례 시 관측과 수치모의 된 바람 분석)

  • Kim, Hae-Min;Nam, Hyoung-Gu;Kim, Baek-Jo;Jee, Joon-Bum
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.433-443
    • /
    • 2021
  • The wind speed and wind direction in Yeongdong are one of the crucial meteorological factors for forecasting snowfall in this area. To improve the snowfall forecast in Yeongdong region, Yeongdong Extreme Snowfall-Windstorm Experiment, YES-WEX was designed. We examined the wind field variation simulated with Local Data Assimilation and Prediction System (LDAPS) using observed wind field during YES-WEX period. The simulated wind speed was overestimated over the East Sea and especially 2 to 4 times in the coastal line. The vertical wind in Yeongdong region, which is a crucial factor in the snowfall forecast, was not well simulated at the low level (850 hPa~1000 hPa) until 12 hours before the forecast. The snowfall distribution was also not accurately simulated. Three hours after the snowfall on the East Sea coast was observed, the snowfall was simulated. To improve the forecast accuracy of snowfall in Yeongdong region, it is important to understand the weather conditions using the observed and simulated data. In the future, data in the northern part of the East Sea and the mountain slope of Taebaek observed from the meteorological aircraft, ship, and drone would help in understanding the snowfall phenomenon and improving forecasts.

Development of a High-Resolution Near-Surface Air Temperature Downscale Model (고해상도 지상 기온 상세화 모델 개발)

  • Lee, Doo-Il;Lee, Sang-Hyun;Jeong, Hyeong-Se;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.473-488
    • /
    • 2021
  • A new physical/statistical diagnostic downscale model has been developed for use to improve near-surface air temperature forecasts. The model includes a series of physical and statistical correction methods that account for un-resolved topographic and land-use effects as well as statistical bias errors in a low-resolution atmospheric model. Operational temperature forecasts of the Local Data Assimilation and Prediction System (LDAPS) were downscaled at 100 m resolution for three months, which were used to validate the model's physical and statistical correction methods and to compare its performance with the forecasts of the Korea Meteorological Administration Post-processing (KMAP) system. The validation results showed positive impacts of the un-resolved topographic and urban effects (topographic height correction, valley cold air pool effect, mountain internal boundary layer formation effect, urban land-use effect) in complex terrain areas. In addition, the statistical bias correction of the LDAPS model were efficient in reducing forecast errors of the near-surface temperatures. The new high-resolution downscale model showed better agreement against Korean 584 meteorological monitoring stations than the KMAP, supporting the importance of the new physical and statistical correction methods. The new physical/statistical diagnostic downscale model can be a useful tool in improving near-surface temperature forecasts and diagnostics over complex terrain areas.

A Comparison between the Reference Evapotranspiration Products for Croplands in Korea: Case Study of 2016-2019 (우리나라 농지의 기준증발산 격자자료 비교평가: 2016-2019년의 사례연구)

  • Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Youn, Youjeong;Kim, Nari;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1465-1483
    • /
    • 2020
  • Evapotranspiration is a concept that includes the evaporation from soil and the transpiration from the plant leaf. It is an essential factor for monitoring water balance, drought, crop growth, and climate change. Actual evapotranspiration (AET) corresponds to the consumption of water from the land surface and the necessary amount of water for the land surface. Because the AET is derived from multiplying the crop coefficient by the reference evapotranspiration (ET0), an accurate calculation of the ET0 is required for the AET. To date, many efforts have been made for gridded ET0 to provide multiple products now. This study presents a comparison between the ET0 products such as FAO56-PM, LDAPS, PKNU-NMSC, and MODIS to find out which one is more suitable for the local-scale hydrological and agricultural applications in Korea, where the heterogeneity of the land surface is critical. In the experiment for the period between 2016 and 2019, the daily and 8-day products were compared with the in-situ observations by KMA. The analyses according to the station, year, month, and time-series showed that the PKNU-NMSC product with a successful optimization for Korea was superior to the others, yielding stable accuracy irrespective of space and time. Also, this paper showed the intrinsic characteristics of the FAO56-PM, LDAPS, and MODIS ET0 products that could be informative for other researchers.

The Evaluation of Flood Forecast Applicability of Merged Predictive Precipitation Data (병합 예측강수 자료를 활용한 홍수 예측 가능성 평가)

  • Kagn, Narae;Yoon, Jungsoo;Hwang, Seokhwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.318-318
    • /
    • 2020
  • 한국건설기술연구원에서는 기상청과 한강홍수통제소에서 생산중인 강수예측자료의 정확도 향상과 홍수예보에 활용하기 위해 예측강수 병합 기법을 개발하였다. 본 연구에서는 기 평가된 강수량 예측 정확도 외에 홍수예보의 적용성을 살펴보기 위해 각 예측 강수량 자료의 유출량 정확도 평가를 하고자 하였다. 한강홍수통제소의 비상용 홍수예보모형을 이용하여 +6시간까지 병합 예측 자료의 유출분석을 실시하였다. 임의의 강우분포를 이용하여 예측하는 기존 홍수예보에 비해 개선된 결과를 확인할 수 있었다.

  • PDF