• Title/Summary/Keyword: (reinforcement and reduction method)

Search Result 163, Processing Time 0.027 seconds

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.

Analysis of Influential Factors on Ploughing Failure of Footwall Slope (Footwall 비탈면의 ploughing 파괴에 미치는 영향인자 분석)

  • Moon, Joon-Shik;Park, Woo-Jeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.659-665
    • /
    • 2016
  • The limit equilibrium method (LEM) is commonly used for slope design and stability analysis because it is easy to simulate slope and requires short calculating time. However, LEM cannot adequately simulate ploughing failure in a footwall slope with a joint set dipping parallel with slope, e.g. bedding joint set. This study performed parametric study to analyze the influence factors on ploughing failure using UDEC which is a commercial two-dimensional DEM (Distinct Element Method)-based numerical program. The influence of joint structure and properties on stability of a footwall slope against ploughing failure was investigated, and the factor of safety was estimated using the shear strength reduction method. It was found that the stability of footwall slope against ploughing failure strongly relies on dip angle of conjugate joint, and the critical bedding joint spacing and the critical length of slab triggering ploughing failure are also affected by dip angle of conjugate joint. The results obtained from this study can be used for effective slope design and construction including reinforcement.

An Experimental Study on Ground Reinforcement Effect of Concrete and Expansion Mat for Prevention of Buried Pipe Damage (지중매설관 손상 방지를 위한 콘크리트매트와 팽창매트의 지반보강효과에 관한 실험적 연구)

  • Park, Jeong-Jun;Shin, Heesoo;Yuu, Jungjo;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.91-101
    • /
    • 2019
  • Recently, small-scale excavation like ground cavity restoration and buried pipe replacement works are being carried out in urban area, in order to improve living convenience. This paper describes experiment results on the ground reinforcement method that can reduce the buried pipe damage, when the differential settlement occurred due to poor compaction of ground below the buried pipe. Plate load tests were conducted to evaluate a reinforcement effect of ground using concrete mat and expansion mat in the ground below the buried pipe. The results showed that the stress reduction ratio by concrete mat and expansion mat according to the surcharge load was about 46%~48% and 39%~42%, respectively. Therefore, the differential settlement of the buried pipe and the ground deformation below the buried pipes were reduced by the reinforcement effect of the concrete mat and expansion mat. This means that it is possible to prevent a buried pipe damage due to underground cavity and ground subsidence, if concrete mat and expansion mat are reinforced in the ground below the buried pipe or on the ground between the buried pipes.

Evaluation of Load Capacity Reduction in RC Beam with Corroded FRP Hybrid Bar and Steel (철근부식을 고려한 FRP Hybrid Bar 및 일반 철근을 가진 RC 보의 내력저하 평가)

  • Oh, Kyung-Suk;Moon, Jin-Man;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • Steel corrosion is a very significant problem both to durability and structural safety since reinforcement has to support loads in tensile region in RC(Reinforced Concrete) member. In the paper, newly invented FRP Hybrid Bar and normal steel are embedded in RC beam member, and ICM (Impressed Current Method) is adopted for corrosion acceleration. Utilizing the previous theory of Faraday's Law, corrosion amount is calculated and flexural tests are performed for RC beam with FRP Hybrid Bar and steel, respectively. Corrosion amount level of 4.9~7.8% is measured in normal RC member and the related reduction of flexural capacity is measured to be -25.4~-50.8%, however there are no significant reduction of flexural capacity and corrosion initiation in RC samples with FRP Hybrid Bar due to high resistance of epoxy-coated steel to corrosion initiation. In the accelerated corrosion test, excellent performance of anti-corrosion and bonding with concrete are evaluated but durability evaluation through long-term submerged test is required for actual utilization.

Optimization of Reinforcement of Thin-Walled Structures for a Natural Frequency (고유진동수를 고려한 박판 구조물의 보강재 최적설계)

  • Lim O-Kaung;Jeong Seung-Hwan;Choi Eun-Ho;Kim Dae-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.195-202
    • /
    • 2006
  • Thin-walled structures are efficiently utilized an automobiles, aircraft, satellite and ship as well as needed light weight simultaneously. This paper presents new shape of automobile hood reinforcement that rotating parts as engine, transmission are protected by thin-walled structures. The automobile hood is concerned about the resonance occurs due to the frequency of the rotating parts. The hood must be designed by supporting the stiffness of design loads and considering the natural frequencies. Hence, it is sustained the stiffness and considered the vibration by resonance. It is deep related to ride. Therefore, the topology, shape and size optimization methods are used to design the automobile hood. Topology technique is applied to determine the layout of a structural component optimum size with maximized natural frequency by volume reduction. In this research, The optimal structure layout of an inner reinforcement of an automobile hood for the natural frequency of a designated mode is obtained by using topology optimization method. The optimum size and the optimum shape are determined by PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm.

A Study of Aesthetical Value of Composition principle on Security Guard Martial Arts (경호무도 구성 원리의 미학적 탐색)

  • Jeong, Yeon-Wan;Hong, Eun-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.5 no.2
    • /
    • pp.108-122
    • /
    • 2009
  • Purpose of this research about reduction the scholastic systematic triangular position of the security guard martial art which repeats a development is insufficient with demand of the while society to recognize and for the philosophic value research of security guard martial art composition principle puts out with the one method and from the reporter to search the aesthetics which appears does. In order to attain the goal of the research which sees the literature which relates with an security guard martial art widly, was an investigation and observed the aesthetics from concept and martial art of aesthetics and this the technical free use ability from actual site of the technical find which leads the practice voluntary repetition practice of security guard martial art with character and the body guard aesthetic integral part experience possibly did, there being will be able to acquire an aesthetic inspiration, confirmed. So the security guard martial art follows the composition principle of maximization central attitude and shock point breath control and mental intensive etc. of reinforcement of direction shock of relativity redundancy mental moral culture body agreement characteristic force and relaxation force and is completed and will be able to embody an aesthetic value with aesthetic elements of technical polishing process inside goes about reduction.

  • PDF

A Study on the Flexural Behavior of Plate Girder Bridge Decks Using a Macro-Element (매크로 요소를 사용한 판형교 바닥판의 휨거동 해석)

  • 최진유;양기재;박남회;강영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • Current specification prescribes that upper and lower reinforcement mat is required in the same amount to resist negative and positive moment in bridge decks. But the negative moment is much smaller than positive moment because the actual behavior of decks consists of local deflection of slab and global deflection of girder. From this study, the analysis method based on harmonic analysis and slope-deflection method was developed and verified by finite element method. The negative moment, obtained from this method, were smaller than those computed based on the KHBDC specifications as much as 40∼50% in the middle of bridge. The amount of reduction of the design negative moment was shown herein to be dependent on variable parameters as shape factor(S/L) of slab, relative stiffness ratio of girder and deck slab, and so on. This investigations indicate that the upper reinforcement mat to resist negative moment can be removed. But further experimental study is required to consider durability and serviceability. From this new design concept, the construction expense can be reduced and the problem of decreasing durability resulting from corrosion of upper reinforcement steel settled.

  • PDF

Evaluation of the Behavioral Characteristics of Soil Nail Using High-strength Steel Pipe through Field Test (현장시험을 통한 고강도 강관을 이용한 쏘일네일의 거동특성 평가)

  • Park, Jeaman;Park, Duhee;Lee, Jongkwon;Jung, Kyoungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.5-13
    • /
    • 2021
  • In this study, as the production of high-strength steel pipes due to the development of steel materials, the stability and applicability of the soil nailing method using high-strength steel pipes were evaluated. Rebars used as reinforcement in the soil nailing method are the same in order to determine the behavioral characteristics and the effect of increasing the reinforcement when replacing it with a high-strength steel pipe of a diameter, a field test were conducted to confirm the stability. As a result of the tensile test, the measured strain is smaller than the strain in the theoretical equation, so it can be seen that the behavior is similar to that of the soil nailing method using rebars. As a result of the displacement measurement, the displacement of the high-strength steel pipe is larger than that of the rebars is considered to be the effect of the internal grouting effect of the steel pipe and the decrease in the cross-sectional area. In the case of using high-strength steel pipes for the soil nailing method, it is judged that the field applicability is good by improving stability and workability through member performance and weight reduction.

Development and Effects of Fear-Reduction Program for Malignant Disease Children with Inserting Implanted Port (이식형 포트 삽입 학령전기 아동의 주사공포감소를 위한 프로그램 개발 및 효과)

  • Yang, Kyung-Ah;Chang, Sook;Kim, Il-Ok
    • Korean Parent-Child Health Journal
    • /
    • v.8 no.1
    • /
    • pp.37-48
    • /
    • 2005
  • Purpose: The purpose of this study was to develop a play education program to reduce children's fear of needle insertion to the implanted port, and to assess the effect of this program. Method: The play education program was composed of play education before needle insertion, encouragement during needle insertion, and a present to reward then after needle insertion. Measurement instruments were the Procedure Behavior Check List(PBCL) and Faces Rating Scale(FRS). Results: The first hypothesis, "the PBCL point of children with malignant disease would decrease after play education program", was rejected(before insertion : Z=-0.189, p= .850, during insertion : Z=-0.350. p= .727, after insertion : Z=-0.590, p= .555). The second hypothesis, "the FRS point of children with malignant disease would decrease after play education program education", was rejected(observer 1 : Z=-0.245, p= .806, observer 2 : Z=-0.912, p= .362, self-report : Z=-0.181, p= .856). The third hypothesis, "the Time of needle insertion would decrease after play education program", was rejected(Z=-0.464, p= .642). Conclusion: The effect on fear-reduction of play education program for children with malignant disease inserted implanted port was not significant but continuous education is needed for parents and children.

  • PDF

Parametric Study on Effect of Floating Breakwater for Offshore Photovoltaic System in Waves (해상태양광 구조물용 부유식 방파제의 파랑저감성능 평가)

  • Kim, Hyun-Sung;Kim, Byoung Wan;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.109-117
    • /
    • 2022
  • There has been an increasing number of studies on photovoltaic energy generation system in an offshore site with the largest energy generation efficiency, as increasing the researches and developments of renewable energies for use of offshore space and resources to replace existing fossil fuels and resolve environmental challenges. For installation and operation of floating photovoltaic systems in an offshore site with harsher environmental conditions, a stiffness of structural members comprising the total system must be reinforced to inland water spaces as dams, reservoirs etc., which have relatively weak condition. However, there are various limitations for the reinforcement of structural stiffness of the system, including producible size, total mass of the system, economic efficiency, etc. Thus, in this study, a floating breakwater is considered for reducing wave loads on the system and minimizing the reinforcement of the structural members. Wave reduction performances of floating breakwaters are evaluated, considering size and distance to the system. The wave loads on the system are evaluated using the higher-order boundary element method (HOBEM), considering the multi-body effect of buoys. Stresses on structural members are assessed by coupled analyses using the finite element method (FEM), considering the wave loads and hydrodynamic characteristics. As the maximum stresses on each of the cases are reviewed and compared, the effect of floating breakwater for floating photovoltaic system is checked, and it is confirmed that the size of breakwater has a significant effect on structural responses of the system.