• Title/Summary/Keyword: (Satellite)

Search Result 11,081, Processing Time 0.042 seconds

Establishment of hydraulic/hydrological models in the Mekong pilot area using global satellite-based water resources data (focusing on HEC-RTS/HMS model application) (글로벌 위성기반 수자원 데이터 활용 메콩지역 수리/수문모델 시범 구축 (HEC-RTS/HMS 모형 적용을 중심으로))

  • Cho, Younghyun;Park, Sang Young;Park, Jin Hyeog
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.111-111
    • /
    • 2021
  • 메콩지역은 최근 연 7%에 육박하는 경제성장률을 달성하며 아세안의 고성장을 지속 견인하고 있으나, 기후변화 및 급속한 도시화로 매년 가뭄·홍수 등 물 관련 재해 발생 빈도 및 강도 증가와 이에 따른 상·하류 국가간 물 분쟁 등으로 인해 메콩지역 지속가능 발전에 지장이 초래되고 있다. 이에 한국과 미국은 메콩우호국(Friends of the Lower Mekong, FLM) "메콩지역 수자원 데이터 관리 및 정보공유 강화에 관한 공동성명(2018년 8월)"을 계기로 메콩유역의 실시간 수자원 변동 모니터링 및 분석과 수자원 데이터 공동활용 역량을 강화하여 효율적이고 과학적인 수자원관리 지원과 함께 한국의 신남방정책과 미국의 인도-태평양 전략 시너지효과를 극대화하고자 메콩 주변국 재해경감 및 수자원 데이터 활용 역량강화를 위한 글로벌 위성기반 수문자료의 생산·활용 및 홍수·가뭄 등의 수재해 분석기술을 개발하고 있다. 여기에는 한국 K-water의 물관리 기술과 미국 NASA, USACE의 위성활용 및 수자원분석 기술을 접목하여 메콩지역의 체계적인 물관리 및 재해로부터 안전성 확보 기여에 목표를 두고 연구를 진행 중에 있다. 본 연구에서는 전 세계적으로 광범위하게 활용되고 있는 미공병단(USACE, U.S. Army Corps of Engineers)의 HEC software 프로그램을 메콩 시범지역(pilot area)에 적용하여 수리/수문모델 구축을 진행코자 한다. 구축되는 모형은 유역 상류 댐의 연계 모의운영 및 하류 홍수분석이 동시 가능한 HEC-RTS(Real-Time Simulation)로 이는 HEC-HMS, -ResSim, -RAS와 -FIA 모형이 순차적으로 결합된 수리/수문 모델링 시스템이다. 모형의 시범적용 지역은 현지 메콩위원회(MRC, Mekong River Comission)의 의견 등을 반영, 메콩강 하류지역(Lower Mekong) 본류 유역에 위성 자료 활용 및 준실시간(near real-time)으로 댐 모의운영 등을 고려할 수 있는 JingHong댐(중국 란창강 최하류)에서 라오스 Xayaburi댐(메콩강 최상류)까지의 구간을 선정하였다. 한편, 금번 연구에서는 HEC-RTS 중 HMS 모형 적용을 중심으로 가용한 위성자료(GPM IMERG)와 K-LIS 지표 모형 생산 자료를 활용하여 과거 홍수사상에 대한 모의를 고려하였다. 아울러, 연구에서 구축된 HMS 모형은 HEC-RTS에 포함되어 메콩 시범지역의 종합적 수리/수문분석에 적용될 예정이다.

  • PDF

Analysis of Hydraulic Characteristics in River Using 3D Geospatial Information (3차원 지형공간정보를 이용한 하천수리특성 분석)

  • Kim, Si-Chul;Lee, Jong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.33-33
    • /
    • 2021
  • 예측하기 어려운 복잡한 기후 변화로 인해 수자원 관리측면에서 다양한 방법을 도입하여 해결할 수 있는 방안이 국가적 주요 관심사로 다루어지고 있다. 따라서 투입인력과 소요시간 절감, 장비와 인력진입 불가지역에 대한 정보획득, 높은 공간해상도, 항공측량 대비 높은 경제성 등 다양한 장점의 드론을 이용한 하천지형 특성별 수리특성 분석방안이 필요하다. 본 연구에서는 성연천 하류부지역을 대상으로 위성항법시스템(Global Navigation Satellite System, GNSS) 측량 지형성과와 드론측량(Drone) 지형성과를 지상에 설치된 CHP(Check Point) 좌표 값을 확인하여 두 지형의 정확도를 비교하였으며 HEC-RAS 모형을 이용하여 빈도별 수리특성을 비교 산정하였다. 본 연구는 성연천 하류 480m구간을 선정하고 GNSS를 이용한 실측지형자료와 GCP(Ground Control Point)를 얻기 위해 정확도 검증을 실시하였으며 위성항법시스템(GNSS) 측량과 DRONE RGB측량의 CHP(Check Point) 오차를 비교하여 정확도를 검증하였다. 오차 값이 확인된 위성항법시스템(GNSS)을 이용하여 가상기준점을 선정하고 RTK 모바일스테이션을 설치하여 DRONE LIDAR측량을 통해 지형자료를 취득하였으며 얻어진 지형자료를 HEC-RAS를 통해 입력 후 성연천 하천기본계획에 제시되어진 조도계수와 빈도별 홍수위를 적용하여 연구구간 480m에 대해 100년 빈도의 결과 값을 비교 검토하였다. 100년 빈도 계획 홍수량 조건의 하상과 한계수위의 차에서 위성항법시스템(GNSS) 측량 지형자료를 기준으로 평균수위 측정오차는 드론 RGB 측량 지형자료 0.460m, 드론 LIDAR 측량 지형자료 0.260m의 결과를 얻었으며 동일 조건 흐름하의 평균유속에서 위성항법시스템(GNSS) 측량 지형자료를 기준으로 평균유속 측정오차는 드론 RGB 측량 지형자료 0.40m/s, 드론 LIDAR 측량 지형자료 0.36m/s의 결과를 얻었다. 통수 단면적의 비교 결과는 위성항법시스템(GNSS) 측량 지형자료를 기준으로 드론 RGB 측량 지형자료 전체 단면의 평균오차는 20.20m2, 드론 LIDAR 측량 지형자료 전체 단면의 평균오차는 21.682의 결과를 얻었으며 이상에서와 같이 홍수위와 평균유속, 통수 단면적의 측정오차 비교 결과를 종합할 때 통수 단면적 측정결과는 위성항법시스템(GNSS) 측량과 드론 RGB 측량의 차이가 적었으나 계획 홍수량 조건의 하상과 한계수위 차이와 동일조건 흐름하의 평균유속에서 위성항법시스템(GNSS) 측량과 드론 LIDAR 측량의 차이가 적은 것으로 나타났다. 그리고 통수용량(capacity)(m3) 비교에서는 위성항법시스템(GNSS) 측량을 기준으로 드론 RGB 측량은 약 7644m3, 드론 LIDAR 측량은 약 7547m3의 차이를 보여 드론 LIDAR를 이용한 결과가 가장 정확한 측정방법으로 추천할 수 있음을 확인하였다.

  • PDF

Detection of Plastic Greenhouses by Using Deep Learning Model for Aerial Orthoimages (딥러닝 모델을 이용한 항공정사영상의 비닐하우스 탐지)

  • Byunghyun Yoon;Seonkyeong Seong;Jaewan Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • The remotely sensed data, such as satellite imagery and aerial photos, can be used to extract and detect some objects in the image through image interpretation and processing techniques. Significantly, the possibility for utilizing digital map updating and land monitoring has been increased through automatic object detection since spatial resolution of remotely sensed data has improved and technologies about deep learning have been developed. In this paper, we tried to extract plastic greenhouses into aerial orthophotos by using fully convolutional densely connected convolutional network (FC-DenseNet), one of the representative deep learning models for semantic segmentation. Then, a quantitative analysis of extraction results had performed. Using the farm map of the Ministry of Agriculture, Food and Rural Affairsin Korea, training data was generated by labeling plastic greenhouses into Damyang and Miryang areas. And then, FC-DenseNet was trained through a training dataset. To apply the deep learning model in the remotely sensed imagery, instance norm, which can maintain the spectral characteristics of bands, was used as normalization. In addition, optimal weights for each band were determined by adding attention modules in the deep learning model. In the experiments, it was found that a deep learning model can extract plastic greenhouses. These results can be applied to digital map updating of Farm-map and landcover maps.

The Analysis of Future Land Use Change Impact on Hydrology and Water Quality Using SWAT Model (SWAT 모형을 이용한 미래 토지이용변화가 수문 - 수질에 미치는 영향 분석)

  • Park, Jong-Yoon;Lee, Mi Seon;Lee, Yong Jun;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.187-197
    • /
    • 2008
  • This study is to assess the impact of future land use change on hydrology and water quality in Gyungan-cheon watershed ($255.44km^2$) using SWAT (Soil and Water Assessment Tool) model. Using the 5 past Landsat TM (1987, 1991, 1996, 2004) and $ETM^+$ (2001) satellite images, time series of land use map were prepared, and the future land uses (2030, 2060, 2090) were predicted using CA-Markov technique. The 4 years streamflow and water quality data (SS, T-N, T-P) and DEM (Digital Elevation Model), stream network, and soil information (1:25,000) were prepared. The model was calibrated for 2 years (1999 and 2000), and verified for 2 years (2001 and 2002) with averaged Nash and Sutcliffe model efficiency of 0.59 for streamflow and determination coefficient of 0.88, 0.72, 0.68 for Sediment, T-N (Total Nitrogen), T-P (Total Phosphorous) respectively. The 2030, 2060 and 2090 future prediction based on 2004 values showed that the total runoff increased 1.4%, 2.0% and 2.7% for 0.6, 0.8 and 1.1 increase of watershed averaged CN value. For the future Sediment, T-N and T-P based on 2004 values, 51.4%, 5.0% and 11.7% increase in 2030, 70.5%, 8.5% and 16.7% increase in 2060, and 74.9%, 10.9% and 19.9% increase in 2090.

Assessment of MODIS Leaf Area Index (LAI) Influence on the Penman-Monteith Evapotranspiration of SLURP Model (MODIS 위성영상으로부터 추출된 엽면적지수(LAI)가 SLURP 모형의 Penman-Monteith 증발산량에 미치는 영향 평가)

  • HA, Rim;SHIN, Hyung-Jin;Park, Geun-Ae;KIM, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.495-504
    • /
    • 2008
  • Evapotranspiration (ET) is an important state variable while simulating daily streamflow in hydrological models. In the estimation of ET, for example, when using FAO Penman Monteith equation, the LAI (Leaf Area Index) value reflecting the conditions of vegetation generally affects considerably. Recently in evaluating the vegetation condition as a fixed quantity, the remotely sensed LAI from MODIS satellite data is available, and the time series values of spatial LAI coupled with land use classes are utilized for ET evaluation. Four years (2001-2004) of MODIS LAI was prepared for the evaluation of Penman Monteith ET in the continuous hydrological model, SLURP (Semi-distributed Land Use-based Runoff Processes). The model was applied for simulating the dam inflow of Chungju watershed ($6661.3km^2$) located in the upstream of Han river basin. For four years (2001-2004) dam inflow data and meteorological data, the model was calibrated and verified using MODIS LAI data. The average Nash-Sutcliffe model efficiency was 0.66. The 4 years watershed average Penman Monteith ETs of deciduous, coniferous, and mixed forest were 639.1, 422.4, and 631.6 mm for average MODIS LAI values of 3.64, 3.50, and 3.63 respectively.

Assessment of Future Climate and Land Use Change on Hydrology and Stream Water Quality of Anseongcheon Watershed Using SWAT Model (II) (SWAT 모형을 이용한 미래 기후변화 및 토지이용 변화에 따른 안성천 유역 수문 - 수질 변화 분석 (II))

  • Lee, Yong Jun;An, So Ra;Kang, Boosik;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.665-673
    • /
    • 2008
  • This study is to assess the future potential climate and land use change impact on streamflow and stream water quality of the study watershed using the established model parameters (I). The CCCma (Canadian Centre for Climate Modelling and Analysis) CGCM2 (Canadian Global Coupled Model) based on IPCC SRES (Special Report Emission Scenarios) A2 and B2 scenarios were adopted for future climate condition, and the data were downscaled by Stochastic Spatio-Temporal Random Cascade Model technique. The future land use condition was predicted by using modified CA-Markov (Cellular Automata-Markov chain) technique with the past time series of Landsat satellite images. The model was applied for the future extreme precipitation cases of around 2030, 2060 and 2090. The predicted results showed that the runoff ratio increased 8% based on the 2005 precipitation (1160.1 mm) and runoff ratio (65%). Accordingly the Sediment, T-N and T-P also increased 120%, 16% and 10% respectively for the case of 50% precipitation increase. This research has the meaning in providing the methodological procedures for the evaluation of future potential climate and land use changes on watershed hydrology and stream water quality. This model result are expected to plan in advance for healthy and sustainable watershed management and countermeasures of climate change.

Automated Satellite Image Co-Registration using Pre-Qualified Area Matching and Studentized Outlier Detection (사전검수영역기반정합법과 't-분포 과대오차검출법'을 이용한 위성영상의 '자동 영상좌표 상호등록')

  • Kim, Jong Hong;Heo, Joon;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.687-693
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene, one of which represents a reference image, while the other is geometrically transformed to the one. In order to improve efficiency and effectiveness of the co-registration approach, the author proposed a pre-qualified area matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with cross correlation coefficient. For refining matching points, outlier detection using studentized residual was used and iteratively removes outliers at the level of three standard deviation. Throughout the pre-qualification and the refining processes, the computation time was significantly improved and the registration accuracy is enhanced. A prototype of the proposed algorithm was implemented and the performance test of 3 Landsat images of Korea. showed: (1) average RMSE error of the approach was 0.435 pixel; (2) the average number of matching points was over 25,573; (3) the average processing time was 4.2 min per image with a regular workstation equipped with a 3 GHz Intel Pentium 4 CPU and 1 Gbytes Ram. The proposed approach achieved robustness, full automation, and time efficiency.

Statistical Analyses of Soil Moisture Data from Polarimetric Scanning Radiometer and In-situ (Polarimetric Scanning Radiometer 와 In-situ를 이용한 토양수분 자료의 통계분석)

  • Jang, Sun Woo;Jeon, Myeon Ho;Choi, Minha;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.487-495
    • /
    • 2010
  • Soil moisture is a crucial factor in hydrological system which influences runoff, energy balance, evaporation, and atmosphere. United States National Aeronautic and Space Administration (NASA) and Department of Agriculture (USDA) have established Soil Moisture Experiment (SMEX) since 2002 for the global observations. SMEX provides useful data for the hydrological science including soil moisture and hydrometeorological variables. The purpose of this study is to investigate the relationship between remotely sensed soil moisture data from aircraft and satellite and ground based experiment. C-band of Polarimetric Scanning Radiometer (PSR) that observed the brightness temperature provides soil moisture data using a retrieval algorithm. It was compared with the In-situ data for 2-30 cm depth at four sites. The most significant depth is 2-10 cm from the correlation analysis. Most of the sites, two data are similar to the mean of data at 10 cm and the median at 7 cm and 10 cm at the 10% significant level using the Rank Sum test and t-test. In general, soil moisture data using the C-band of the PSR was established to fit the Normal, Log-normal and Gumbel distribution. Soil moisture data using the aircraft and satellites will be used in hydrological science as fundamental data. Especially, the C-band of PSR will be used to prove soil moisture at 7-10 cm depths.

Establishment of hydraulic/hydrological models in the Mekong pilot area using global satellite-based water resources data II - focusing on HEC-RTS/RAS model application (글로벌 위성기반 수자원 데이터 활용 메콩지역 수리/수문모델 시범 구축 II - HEC-RTS/RAS 모형 적용을 중심으로)

  • Cho, Younghyun;Noh, Joonwoo;Park, Sang Young;Park, Jin Hyeog
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.121-121
    • /
    • 2022
  • 한국과 미국은 2018년 8월에 발표한 메콩우호국(Friends of the Lower Mekong, FLM) "메콩지역 수자원 데이터 관리 및 정보공유 강화에 관한 공동성명"을 계기로 메콩유역의 실시간 수자원 변동 모니터링 및 분석과 수자원 데이터 공동활용 역량을 강화하여 효율적이고 과학적인 수자원관리 지원과 함께 한국의 신남방정책과 미국의 인도-태평양 전략 시너지효과를 극대화하고자 메콩 주변국 재해경감 및 수자원 데이터 활용 역량강화를 위한 글로벌 위성기반 수문자료의 생산·활용 및 홍수·가뭄 등의 수재해 분석기술을 개발하고 있다. 여기에는 한국 K-water의 물관리 기술과 미국 NASA, USACE의 위성활용 및 수자원분석 기술을 접목하여 메콩지역의 체계적인 물관리 및 재해로부터 안전성 확보 기여에 목표를 두고 연구를 진행 중에 있다. 본 연구에서는 전 세계적으로 광범위하게 활용되고 있는 미공병단(USACE, U.S. Army Corps of Engineers)의 HEC software 프로그램을 메콩 시범지역(pilot area)에 적용하여 수리/수문모델 구축을 진행하고 있다. 구축되는 모형은 유역 상류 댐의 연계 모의운영 및 하류 홍수분석이 동시 가능한 HEC-RTS(Real-Time Simulation)로 이는 HEC-HMS, -ResSim, -RAS와 -FIA 모형이 순차적으로 결합된 수리/수문 모델링 시스템이다. 모형의 시범적용 지역은 현지 메콩위원회(MRC, Mekong River Comission)의 의견 등을 반영, 메콩강 하류지역(Lower Mekong) 본류 유역에 위성자료 활용 및 준실시간(near real-time)으로 댐 모의운영 등을 고려할 수 있는 JingHong댐(중국 란창강 최하류)에서 라오스 Xayaburi댐(메콩강 최상류)까지의 구간을 선정하였으며, 전년도에는HEC-RTS 중 HMS(Hydrologic Modeling System) 모형 적용을 중심으로 가용한 위성자료(GPM IMERG)를 활용하여 과거 홍수사상에 대한 모의를 고려한 강우-유출모형의 구축을 완료하였다. 이에 연속하여 금년도에는 동일유역 내 하천 단면 등이 확보된 Chiang Saen 지점에서 Xayaburi 댐까지의 구간에 대해 RAS(River Analysis System)을 구축할 예정으로 구축된 RAS 모형은 HEC-RTS에 포함되어 메콩 시범지역의 종합적 수리/수문분석에 적용될 예정이다.

  • PDF

A Study on Predicting North Korea's Electricity Generation Using Satellite Nighttime Light Data (위성 야간광 자료를 이용한 북한의 발전량 예측 연구)

  • Bong Chan Kim;Seulki Lee;Chang-Wook Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.81-91
    • /
    • 2024
  • Electrical energy is a key source of energy for modern civilization, and changes in electricity generation and consumption are closely related to industry and life in general. In this study, we identified the correlation between electricity generation and nighttime light values in South Korea and used it to predict monthly electricity generation trends in North Korea. The results of the study showed a low Pearson correlation coefficient of 0.34 between nighttime light and electricity generation in Seoul, but a high Pearson correlation coefficient of 0.79 between weighting for Seoul case nighttime light values and electricity generation using monthly average temperature. Using nighttime light values weighting for Seoul case by the average monthly temperature in Pyongyang to predict the monthly power generation trend in North Korea, we found that the month-on-month power generation increase in December 2022 was about 60% higher than the month-on-month power generation increase in December 2020 and 2021. The results of this study are expected to help predict monthly electricity generation trends in regions where monthly electricity generation data does not exist, making it difficult to identify timely industry trends.