• Title/Summary/Keyword: (La,Sr)$MnO_3$-YSZ composite cathode

Search Result 15, Processing Time 0.022 seconds

Effect of Co Dopant on the (La, Sr)$MnO_3$ Cathode for Solid Oxide Fuel Cell (고체산화물 연료전지용 (La, Sr)$MnO_3$ 양극에 대한 Co 첨가효과)

  • 김재동;김구대;이기태
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.612-616
    • /
    • 2000
  • The effect of Co dopant on the (La, Sr)MnO3 cathode was investigated. La2Zr2O7 and SrZrO3 were formed as the reaction products between YSZ and LSMC. The reactivity of LSMC with YSZ increased with increasing Co content. However, the cathodic polarization resistance decreased with increasing Co doping. Therefore, doping Co at Mn site in the (La, Sr)MnO3 cathode was effective on controlling the polarization resistance of the cathode. The polarization property of LSMC-YSZ composite(60 wt%: 40 wt%) cathode was better than that of LSMC single cathode.

  • PDF

Impedance Properties of LSMC-YSZ Composite Cathode (LSMC-YSZ Composite 양극의 임피던스 특성)

  • 김재동;김구대;문지웅;김창은;이동아
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.917-922
    • /
    • 1998
  • The polarization characteristics of the cathodes were discussed which were composed YSZ and ${(La_{0.75 }Sr_{0.25 })}_{0.95}Mn_{0.8 }Co_{0.2}O_3$ The three-phase-boundary length increased with the addition of YSN resulting in the minimum po-larization resistance at 60(LSMC) : 40(YSZ) wt% When LSMC-YSZ compoiste cathodes was sintered at $1200^{\circ}C$ minimum polarization resistance was observed and the capacitace increased with increasing sintering tem-perature.

  • PDF

Oxygen Reduction Mechanism and Electrode Properties of (La,Sr)$MnO_3$-YSZ Composite Cathode for Solid Oxide Fuel Cell (Part II: Electrode Properties) (고체산화물 연료전지용 (La,Sr)$MnO_3$-YSZ 복합체 양극의 산소환원 반응기구 및 전극 특성 (Part II: 전극 특성))

  • 김재동;김구대;이기태
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.93-99
    • /
    • 2001
  • (La,Sr)MnO$_3$(LSM)-YSZ 복합체 양극에 있어서 소결온도 및 전극두께와 cathodic potential이 전극 특성에 미치는 영향을 고찰하였다. 양극의 소결은 삼상계면의 양을 결정하는 중요한 변수로 LSM 단미 양극과 YSZ가 40 wt% 포함된 LSM-YSZ 복합체 양극 모두 120$0^{\circ}C$에 소결했을 때 가장 낮은 분극저항을 나타내었다. 또한 양극 후막의 두께가 얇아지면 양극의 in-plane 저항이 증가하여 ohmic 저항이 증가하였는데, LSM-YSZ 복합체 양극의 경우 약 30$mu extrm{m}$ 정도의 전극두께가 가장 효과적인 전극 특성을 나타내었다. 한편, LSM-YSZ 복합체 양극에 -0.5 V의 cathodic potential을 인가함에 따라 양극에서 일어나는 산소환원반응의 활성이 증가하였는데, 1가 산소이온의 표면확산반응의 분극저항은 감소하였으나, 고주파수 영역에서 나타나는 산소이온전달반응의 저항은 거의 변화하지 않았다. 이것은 Mn의 환원에 의한 양극표면에 생성된 산소공공에 기인한다.

  • PDF

Oxygen Reduction Mechanism and Electrode Properties of (La,Sr)$MnO_3$-YSZ Composite Cathode for Solid Oxide Fuel Cell (Part I: Oxygen Reduction Mechanism) (고체산화물 연료전지용 (La,Sr)$MnO_3$-YSZ 복합체 양극의 산소환원 반응기구 및 전극 특성 (Part I: 산소환원 반응기구))

  • 김재동;김구대;이기태
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.84-92
    • /
    • 2001
  • (La,Sr)MnO$_3$(LSM)-YSZ 복합체 양극의 산소환원 반응기구에 대해 고찰하였다. YSZ를 첨가함에 따라 복합체 양극의 ohmic 저항이 증가하고, 분극 저항은 YSZ를 40 wt%~50 wt% 혼합하였을 때 최소값을 나타내었다. 또한 LSM-YSZ 복합체 양극의 산소환원 반응기구는 1가 산소이온의 표면확산과 산소이온전달반응에 의해서 지배됨을 알 수 있었다. 임피던스 분석 결과에 따르면 고주파수 영역에서 나타나는 반원은 산소이온전달반응으로 산소분압 의존성이 거의 없고, YSZ가 40 wt% 첨가되었을 때 최소값을 나타내었다. 중간주파수 영역에서 나타나는 반원은 1가 산소이온의 표면확산반응으로 산소분압 의존성은 약 1/4이고, YSZ가 40~50 wt% 첨가되었을 때 최소값을 나타냈다. 한편, 저주파수 영역에 나타나는 반원은 가스확산반응으로 산소분압 의존성이 1이고, 온도에 따른 의존성이 거의 없었다.

  • PDF

Development of $YSZ/La_0.85S_r0.15MnO_3$ Composite Electrodes for Solid Oxide Fuel Cells (고체산화물 연료전지용 $YSZ/La_0.85S_r0.15MnO_3$계 복합전극의 개발)

  • 윤성필;현상훈;김승구;남석우;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.982-990
    • /
    • 1999
  • YSZ/LSM composite cathode was fabricated by dip-coating of YSZ sol on the internal pore surface of a LSM cathode followed by sintering at low temperature (800-100$0^{\circ}C$) The YSZ coating significantly increased the TPB(Triple Phase Boundary) where the gas the electrode and the electrolyte were in contact with each other. Sinter the formation of resistive materials such as La2Zr2O7 or SrZrO3 was prevented due to the low processing temperature and TPB was increased due to the YSZ film coating the electrode resistance (Rel) was reduced about 100 times compared to non-modified cathode. From the analysis of a.c impedance it was shown that microstructural change of the cathode caused by YSZ film coating affected the oxygen reduction reaction. In the case of non-modified cathode the RDS (rate determining step) was electrode reactions rather than mass transfer or the oxygen gas diffusion in the experimental conditions employed in this study ($600^{\circ}C$-100$0^{\circ}C$ and 0,01-1 atm of Po2) for the YSZ film coated cathode however the RDS involved the oxygen diffusion through micropores of YSZ film at high temperature of 950-100$0^{\circ}C$ and low oxygen partial pressure of 0.01-0.03 atm.

  • PDF

Performance of Air Electrodes with a Surface-Polished Yttria-Stabilized Zircona Electrolyte for Thin-Film Solid Oxide Fuel Cells (박막 고체산화물 연료전지용 이트리아 안정화 지르코니아 전해질 연마표면상의 공기극 성능)

  • Lee, Yu-Gi
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.283-289
    • /
    • 2001
  • Composite cathodes of 50/50 vol% LSM- YSZ (La$_{1-x}$Sr$_{x}$MnO$_3$-yttria stabilized zirconia) were deposited onto surface- Polished YSZ electrolytes by colloidal deposition technique. The cathode characteristics were then examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and studied by ac impedance spectroscopy (IS). The typical impedance spectra measured for an air/LSM- YSZ/YSZ/Pt/air cell at $700^{\circ}C$ were composed of two depressed arcs. Addition of YSZ to the LSM electrode significantly enlarged the triple-phase boundaries (TPB) length inside the electrode, which led to a pronounced decrease in cathodic resistivity of LSM-YSZ composite electrodes. Polishing the electrolyte surface to eliminate the influences of surface impurities and to enlarge the TPB length can further reduce cathode resistivity. The cathodic resistivity of the LSM- YSZ electrodes was a strong function of operation temperature, composition and particle size of cathode materials, applied current, and electrolyte surface roughness.

  • PDF

Characterization and Fabrication of La(Sr)Fe(Co)O3-δ Infiltrated Cathode Support-Type Solid Oxide Fuel Cells (La(Sr)Fe(Co)O3-δ 침지법을 이용한 양극 지지형 SOFC 제조 및 출력 특성)

  • Hwang, Kuk-Jin;Kim, Min Kyu;Kim, Hanbit;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.501-506
    • /
    • 2019
  • To overcome the limitations of the conventional Ni anode-supported SOFCs, various types of ceramic anodes have been studied. However, these ceramic anodes are difficult to commercialize because of their low cell performances and difficulty in manufacturing anode-support typed SOFCs. Therefore, in this study, to use these ceramic anodes and take advantage of anode-supported SOFC, which can minimize ohmic loss from the thin electrolyte, we fabricated cathode support-typed SOFC. The cathode-support of LSCF-YSZ was prepared by the acid treatment of conventional Ni-YSZ (Yttria-stabilized Zirconia) anode-support, followed by the infiltration of LSCF to YSZ scaffold. The composite of $La(Sr)Ti(Ni)O_3$ and $Ce(Mn,Fe)O_2$ was used as the ceramic anode. The fabricated cathode-supported button cell showed a relatively low power density of $0.207Wcm^{-2}$ at $850^{\circ}C$; however, it is expected to show better performance through the optimization of the infiltration rate and thickness of LSCF-YSZ cathode-support layer.

Preparation and Characteristics of High Performance Cathode for Anode-Supported Solid Oxide Fuel Cell (연료극 지지체식 고체산화물 연료전지용 고성능 공기극 제조 및 특성 연구)

  • Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.88-93
    • /
    • 2005
  • Anode-supported solid oxide fuel cell (SOFC) was investigated to increase the cell power density at intermediate temperature through control of the cathode structure. The anode-supported SOFC cell were fabricated by wet process, in which the electrolyte of $8mol\%\;Y_2O_3-stabilized\;ZrO_2 (YSZ)$ was coated on the surface of anode support of Ni/YSA and then the cathode was coated. The cathode has two- or three- layered structure composed of $(La_{0.85}Sr_{0.15})_{0.9}MnO_{3-x}(LSM),\;LSM/YS$ composite (LY), and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3{LSCF)$ with different thickness. Their single cells with different cathode structures were characterized by measuring the cell performance and ac impedance in the temperature range of 600 to $800^{\circ}C$ in humidified hydrogen with $3\%$ water and air. The cell with $LY\;9{\mu}m/LSM\;9{\mu}m/LSCF\;17{\mu}m$ showed best performance of $590mW/cm^2$, which was attributed to low polarization resistance due to LY and to low interfacial resistance due to LSCF.

Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 성능 특성)

  • Song Rak-Hyun;Song Keun-Suk
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • To improve the conventional cathode-supported tubular solid oxide fuel cell (SOFC) from the viewpoint of low cell power density, expensive fabrication process and high operation temperature, the anode-supported tubular solid oxide fuel cell was investigated. The anode tube of Ni-8mol% $Y_2$O$_3$-stabilized $ZrO_2$ (8YSZ) was manufactured by extrusion process, and, the electrolyte of 8YSZ and the multi-layered cathode of $LaSrMnO_3$(LSM)ILSM-YSZ composite/$LaSrCoFeO_3$ were coated on the surface of the anode tube by slurry dip coating process, subsequently. Their cell performances were examined under gases of humidified hydrogen with 3% water and air. In the thermal cycle condition of heating and cooling rates with $3.33^{\circ}C$/min, the anode-supported tubular cell showed an excellent resistance as compared with the electrolyte-supported planar cell. The optimum hydrogen flow rate was evaluated and the air preheating increased the cell performance due to the increased gas temperature inside the cell. In long-term stability test, the single cell indicated a stable performance of 300 mA/$\textrm{cm}^2$ at 0.85 V for 255 hr.

High Electrochemical Activity of Bi2O3-based Composite SOFC Cathodes

  • Jung, Woo Chul;Chang, Yun-Jie;Fung, Kuan-Zong;Haile, Sossina
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.278-282
    • /
    • 2014
  • Due to high ionic conductivity and favorable oxygen electrocatalysis, doped $Bi_2O_3$ systems are promising candidates as solid oxide fuel cell cathode materials. Recently, several researchers reported reasonably low cathode polarization resistance by adding electronically conducting materials such as (La,Sr)$MnO_3$ (LSM) or Ag to doped $Bi_2O_3$ compositions. Despite extensive research efforts toward maximizing cathode performance, however, the inherent catalytic activity and electrochemical reaction pathways of these promising materials remain largely unknown. Here, we prepare a symmetrical structure with identically sized $Y_{0.5}Bi_{1.5}O_3$/LSM composite electrodes on both sides of a YSZ electrolyte substrate. AC impedance spectroscopy (ACIS) measurements of electrochemical cells with varied cathode compositions reveal the important role of bismuth oxide phase for oxygen electrocatalysis. These observations aid in directing future research into the reaction pathways and the site-specific electrocatalytic activity as well as giving improved guidance for optimizing SOFC cathode structures with doped $Bi_2O_3$ compositions.