• 제목/요약/키워드: (GRU) Gated recurrent unit

검색결과 94건 처리시간 0.023초

A Study on Deep Learning Model for Discrimination of Illegal Financial Advertisements on the Internet

  • Kil-Sang Yoo; Jin-Hee Jang;Seong-Ju Kim;Kwang-Yong Gim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.21-30
    • /
    • 2023
  • 인터넷 불법금융광고는 인터넷 카페, 블로그 등을 통해 통장매매, 신용카드·휴대폰결제현금화 및 개인신용정보매매 등 불법금융행위를 목적으로 한다. 금융감독당국의 노력에도 불구하고 불법금융행위는 줄어들지 않고 있다. 본 연구는 인터넷 불법금융광고 게시글에 파이썬 딥러닝 기반 텍스트 분류기법을 적용해 불법여부를 탐지하는 모델을 제안한다. 텍스트 분류기법으로 주로 사용되는 합성곱 신경망(CNN: Convolutional Neural Network), 순환 신경망(RNN: Recurrent Neural Network), 장단기 메모리(LSTM: Long-Short Term Memory) 및 게이트 순환 유닛(GRU: Gated Recurrent Unit)을 활용한다. 그동안 수작업으로 심사한 불법확인 결과를 기초 데이터로 이용한다. 한국어 자연어처리와 딥러닝 모델의 하이퍼파라미터 조절을 통해 최적의 성능을 보이는 모델을 완성하였다. 본 연구는 그동안 이뤄지지 않았던 인터넷 불법금융광고 판별을 위한 딥러닝 모델을 제시하였다는데 큰 의미가 있다. 또한 딥러닝 모델에서 91.3~93.4% 수준의 정확도를 보임으로써 불법금융광고 탐지에 딥러닝 모델을 실제 적용하여 불법금융광고 근절에 기여할 수 있기를 기대해 본다.

딥러닝 모형을 이용한 팔당대교 지점에서의 유량 예측 (Flow rate prediction at Paldang Bridge using deep learning models)

  • 성연정;박기두;정영훈
    • 한국수자원학회논문집
    • /
    • 제55권8호
    • /
    • pp.565-575
    • /
    • 2022
  • 최근의 수자원공학 분야는 4차산업혁명과 더불어 비약적으로 발전된 딥러닝 기술을 활용한 시계열 수위 및 유량의 예측에 대한 관심이 높아지고 있다. 또한 시계열 자료의 예측이 가능한 LSTM 모형과 GRU 모형을 활용하여 수위 및 유량 예측을 수행하고 있지만 시간 변동성이 매우 큰 하천에서의 유량 예측 정확도는 수위 예측 정확도에 비해 낮게 예측되는 경향이 있다. 본 연구에서는 유량변동이 크고 하구에서의 조석의 영향이 거의 없는 한강의 팔당대교 관측소를 선택하였다. 또한, LSTM 모형과 GRU 모형의 입력 및 예측 자료로 활용될 유량변동이 큰 시계열 자료를 선택하였고 총 자료의 길이는 비교적 짧은 2년 7개월의 수위 자료 및 유량 자료를 수집하였다. 시간변동성이 큰 시계열 수위를 2개의 모형에서 학습할 경우, 2개의 모형 모두에서 예측되는 수위 결과는 관측 수위와 비교하여 적정한 정확도가 확보되었으나 변동성이 큰 유량 자료를 2개의 모형에서 직접 학습시킬 경우, 예측되는 유량 자료의 정확도는 악화되었다. 따라서, 본 연구에서는 급변하는 유량을 정확히 예측하기 위하여 2개 모형으로 예측된 수위 자료를 수위-유량관계곡선의 입력자료로 활용하여 유량의 예측 정확도를 크게 향상시킬 수 있었다. 마지막으로 본 연구성과는 수문자료의 별도 가공없이 관측 길이가 상대적으로 충분히 길지 않고 유출량이 급변하는 도시하천에서의 홍수예경보 자료로 충분히 활용할 수 있을 것으로 기대된다.

딥러닝 기법을 활용한 컨테이너선 운임 예측 모델 (Estimation Model for Freight of Container Ships using Deep Learning Method)

  • 김동균;최정석
    • 해양환경안전학회지
    • /
    • 제27권5호
    • /
    • pp.574-583
    • /
    • 2021
  • 해운 시황을 예측하는 것은 중요한 문제이다. 투자 방식의 결정, 선대 편성 방법, 운임 등을 결정하기 위한 판단 근거가 되며 이는 기업의 이익과 생존에 큰 영향을 미치기 때문이다. 이를 위해 본 연구에서는 기계학습 모델인 장단기 메모리 및 간소화된 장단기 메모리 구조의 Gated Recurrent Units를 활용하여 컨테이너선의 해상운임 예측 모델을 제안한다. 운임 예측 대상은 중국 컨테이너 운임지수(CCFI)이며, 2003년 3월부터 2020년 5월까지의 CCFI 데이터를 학습에 사용하였다. 각 모델에 따라 2020년 6월 이후의 CCFI를 예측한 후 실제 CCFI와 비교, 분석하였다. 실험 모델은 하이퍼 파라메터의 설정에 따라 총 6개의 모델을 설계하였다. 또한 전통적인 분석 방법과의 성능을 비교하기 위해 ARIMA 모델도 실험에 추가하였다. 최적 모델은 두 가지 방법에 따라 선정하였다. 첫 번째 방법으로 각 모델을 10회 반복 실험하여 얻은 RMSE의 평균값이 가장 작은 모델을 선정하는 것이다. 두 번째 방법으로는 모든 실험에서 가장 낮은 RMSE를 기록한 모델을 선정하는 것이다. 실험 결과 전통적 시계열 예측모델인 ARIMA 모델과 비교하여 딥러닝 모델의 정확도를 입증하였으며, 정확한 예측모델을 통해 운임 변동의 위험관리 능력을 제고시키는데 기여했다. 반면 코로나19와 같은 외부 효과에 따른 운임의 급격한 변화상황이 발생한 경우, 예측모델의 정확도가 감소하는 한계점을 나타냈다. 제안된 모델 중 GRU1 모델이 두 가지 평가 방법 모두에서 가장 낮은 RMSE(69.55, 49.35)를 기록하며 최적 모델로 선정되었다.

단어그룹 확장 기법을 활용한 순환신경망 알고리즘 성능개선 연구 (A Study on Performance Improvement of Recurrent Neural Networks Algorithm using Word Group Expansion Technique)

  • 박대승;성열우;김정길
    • 산업융합연구
    • /
    • 제20권4호
    • /
    • pp.23-30
    • /
    • 2022
  • 최근 인공지능(AI)과 딥러닝 발전으로 대화형 인공지능 챗봇의 중요성이 부각되고 있으며 다양한 분야에서 연구가 진행되고 있다. 챗봇을 만들기 위해서 직접 개발해 사용하기도 하지만 개발의 용이성을 위해 오픈소스 플랫폼이나 상업용 플랫폼을 활용하여 개발한다. 이러한 챗봇 플랫폼은 주로 RNN (Recurrent Neural Network)과 응용 알고리즘을 사용하며, 빠른 학습속도와 모니터링 및 검증의 용이성 그리고 좋은 추론 성능의 장점을 가지고 있다. 본 논문에서는 RNN과 응용 알고리즘의 추론 성능 향상방법을 연구하였다. 제안 방법은 RNN과 응용 알고리즘 적용 시 각 문장에 대한 핵심단어의 단어그룹에 대해 확장학습을 통해 데이터에 내재된 의미를 넓히는 기법을 사용하였다. 본 연구의 결과는 순환 구조를 갖는 RNN, GRU (Gated Recurrent Unit), LSTM (Long-short Term Memory) 세 알고리즘에서 최소 0.37%에서 최대 1.25% 추론 성능향상을 달성하였다. 본 연구를 통해 얻은 연구결과는 관련 산업에서 인공지능 챗봇 도입을 가속하고 다양한 RNN 응용 알고리즘을 활용하도록 하는데 기여할 수 있다. 향후 연구에서는 다양한 활성 함수들이 인공신경망 알고리즘의 성능 향상에 미치는 영향에 관한 연구가 필요할 것이다.

GNSS NLOS Signal Classifier with Successive Correlation Outputs using CNN

  • Sangjae, Cho;Jeong-Hoon, Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2023
  • The problem of classifying a non-line-of-sight (NLOS) signal in a multipath channel is important to improve global navigation satellite system (GNSS) positioning accuracy in urban areas. Conventional deep learning-based NLOS signal classifiers use GNSS satellite measurements such as the carrier-to-noise-density ratio (CN_0), pseudorange, and elevation angle as inputs. However, there is a computational inefficiency with use of these measurements and the NLOS signal features expressed by the measurements are limited. In this paper, we propose a Convolutional Neural Network (CNN)-based NLOS signal classifier that receives successive Auto-correlation function (ACF) outputs according to a time-series, which is the most primitive output of GNSS signal processing. We compared the proposed classifier to other DL-based NLOS signal classifiers such as a multi-layer perceptron (MLP) and Gated Recurrent Unit (GRU) to show the superiority of the proposed classifier. The results show the proposed classifier does not require the navigation data extraction stage to classify the NLOS signals, and it has been verified that it has the best detection performance among all compared classifiers, with an accuracy of up to 97%.

딥러닝 기법을 활용한 농업용 저수지 유입량 예측 모델 개발 (Development of Agricultural Reservoir Inflow Prediction Model Using Deep Learning)

  • 이선미;이철희;이재응
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.390-390
    • /
    • 2023
  • 최근 기후변화로 인해 가뭄이 5 ~ 7년 주기로 발생하고 있으며 가뭄 강도가 심화되고 있고, 이러한 현상은 향후 10년 이상이 지속될 것으로 예측되고 있다. 이러한 가뭄으로 인해 2022년에는 각 지역에서 제한급수 및 운반급수 피해인구가 발생하였으며, 전국의 다목적댐 또는 용수전용댐에서는 가뭄 대응을 위해 용수를 감량하였다. 특히 2018년에는 농업용수 공급이 어려워 다수의 지역에서는 논이 마르고 밭이 시들어 농업피해가 발생하였다. 이에 따라 농업용 저수지에서는 가뭄 대응을 위해 저수지 운영곡선 및 연계운영 등과 같은 저수지 운영방안 수립이 필요한 실정이다. 하지만 다목적댐과는 달리 농업용 저수지에서는 수문 계측자료가 부족하기 때문에 저수지 운영방안 수립에 한계가 있다. 이에 본 연구에서는 심각한 가뭄이 발생한 섬진강 유역의 농업용 저수지를 대상으로 딥러닝 모델 기반의 일단위 유입량 예측모형을 개발하였다. 저수지 유입량을 예측하기 위해서는 유역평균강우량 및 과거 유입량 등을 독립변수로 선정하였으며, 시계열 자료 분석을 위해 딥러닝 모델 중 GRU(Gated Recurrent Unit) 모델을 활용하였다. 향후에는 예측 유입량을 활용하여 농업용 저수지의 수요량을 고려한 저수지 운영방안 수립을 통해 가뭄에 대응할 수 있을 것으로 기대된다.

  • PDF

UAV-MEC지원 차량 네트워크에서 트래픽 예측을 통한 DQN기반 태스크 마이그레이션 (DQN-Based Task Migration with Traffic Prediction in UAV-MEC assisted Vehicular Network)

  • 신아영;임유진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.144-146
    • /
    • 2022
  • 차량 환경에서 발생하는 계산 집약적인 태스크가 증가하면서 모바일 엣지 컴퓨팅(MEC, Mobile Edge Computing)의 필요성이 높아지고 있다. 하지만 지상에 존재하는 MEC 서버는 출퇴근 시간과 같이 태스크가 일시적으로 급증하는 상황에 유동적으로 대처할 수 없으며, 이러한 상황을 대비하기 위해 지상 MEC 서버를 추가로 설치하는 것은 자원의 낭비를 불러온다. 최근 이 문제를 해결하기 위해 UAV(Unmanned Aerial Vehicle)기반 MEC 서버를 추가로 사용해 엣지 서비스를 제공하는 연구가 진행되고 있다. 그러나 UAV MEC 서버는 지상 MEC 서버와 달리 한정적인 배터리 용량으로 인해 서버 간 로드밸런싱을 통해 에너지 사용량을 최소화 하는 것이 필요하다. 본 논문에서는 UAV MEC 서버의 에너지 사용량을 고려한 마이그레이션 기법을 제안한다. 또한 GRU(Gated Recurrent Unit) 모델을 활용한 트래픽 예측을 바탕으로 한 마이그레이션을 통해 지연시간을 최소화할 수 있도록 한다. 제안 시스템의 성능을 평가하기 위해 MEC의 마이그레이션 시점을 결정하는 기준점와 차량의 밀도에 따라 실험을 진행하고, 서버의 로드 편차, UAV MEC 서버의 에너지 사용량 그리고 평균 지연 시간 측면에서 성능을 분석한다.

Implementation of On-Device AI System for Drone Operated Metal Detection with Magneto-Impedance Sensor

  • Jinbin Kim;Seongchan Park;Yunki Jeong;Hobyung Chae;Seunghyun Lee;Soonchul Kwon
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.101-108
    • /
    • 2024
  • This paper addresses the implementation of an on-device AI-based metal detection system using a Magneto-Impedance Sensor. Performing calculations on the AI device itself is essential, especially for unmanned aerial vehicles such as drones, where communication capabilities may be limited. Consequently, a system capable of analyzing data directly on the device is required. We propose a lightweight gated recurrent unit (GRU) model that can be operated on a drone. Additionally, we have implemented a real-time detection system on a CPU embedded system. The signals obtained from the Magneto-Impedance Sensor are processed in real-time by a Raspberry Pi 4 Model B. During the experiment, the drone flew freely at an altitude ranging from 1 to 10 meters in an open area where metal objects were placed. A total of 20,000,000 sequences of experimental data were acquired, with the data split into training, validation, and test sets in an 8:1:1 ratio. The results of the experiment demonstrated an accuracy of 94.5% and an inference time of 9.8 milliseconds. This study indicates that the proposed system is potentially applicable to unmanned metal detection drones.

인공 신경망 알고리즘을 활용한 플라이애시 콘크리트의 염해 내구성능 예측 (The Prediction of Durability Performance for Chloride Ingress in Fly Ash Concrete by Artificial Neural Network Algorithm)

  • 권성준;윤용식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.127-134
    • /
    • 2022
  • 본 연구에서는 장기재령(4~6년)으로 양생된 플라이애시 콘크리트를 대상으로 촉진 염화물 이온 통과 시험을 수행하였다. 콘크리트 배합은 3수준의 물-결합재 비(0.37, 0.42, 0.47)와 2수준의 플라이애시 치환율(0, 30 %)을 가지고 있었으며, 시간 의존적으로 개선되는 통과 전하량을 정량적으로 분석하였다. 또한 실험결과를 GRU 알고리즘을 고려한 단별량 시계열 모델을 적용하여 학습하였으며, 그 예측값을 평가하였다. 통과전하량 실험 결과, 플라이애시 콘크리트는 물-결합재 비에 의한 통과 전하량의 변화가 재령이 증가함에 따라 점차 감소하였으며 OPC 콘크리트에 비하여 우수한 염해저항성을 나타내었다. 최종 평가일인 6년에서 플라이애시 콘크리트는 모든 물 결합재 비 조건에서 'Very low' 등급에 해당되는 통과 전하량이 평가되었지만, OPC 콘크리트의 경우 가장 높은 물-결합재 비를 갖는 조건에서 'Moderate' 등급을 나타내었다. 메인 알고리즘으로서 사용한 GRU 알고리즘은 시계열 데이터를 분석할 수 있고 연산 속도가 빠른 장점을 갖고 있다. 4개의 은닉층을 갖는 딥-러닝 모델이 고려되었으며 결과값은 실험값을 합리적으로 예측하고 있었다. 본 연구의 딥-러닝 모델은 단변량 시계열 특성만을 고려할 수 있는 한계점이 존재하지만 추가 연구를 통해 콘크리트의 강도 및 확산계수와 같은 다양한 특성을 고려할 수 있는 모델이 개발 중에 있다.

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • 인터넷정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.