• Title/Summary/Keyword: (Advanced Power Plant Engineering & Simulation System)

Search Result 42, Processing Time 0.024 seconds

Study on The Development of Basic Simulation Network for Operational Transient Analysis of The CANDU Power Plant

  • Park, Jong-Woon;Lim, Jae-cheon;Suh, Jae-seung;Chung, Ji-bum;Kim, Sung-Bae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.423-428
    • /
    • 1995
  • Simulation models have been developed to predict the overall behavior of the CANDU plant systems during normal operational transients. For real time simulation purpose, simplified thermal hydraulic models are applied with appropriate system control logics, which include primary heat transport system solver with its component models and secondary side system models. The secondary side models are mainly used to provide boundary conditions for primary system calculation and to accomodate plant power control logics. Also, for the effective use of simulation package, hardware oriented basic simulation network has been established with appropriate graphic display system. Through validation with typical plant power maneuvering cases using proven plant performance analysis computer code, the present simulation package shows reasonable capability in the prediction of the dynamic behavior of plant variables during operational transients of CANDU plant, which means that this simulation tool can be utilized as a basic framework for full scope simulation network through further improvements.

  • PDF

Development of Dynamic Simulation Software for Power Plant and its Application to Once-Through Boiler (플랜트 동특성 해석용 소프트웨어 개발 및 초임계압 관류형 보일러에의 적용)

  • Lee, Ki-Hyun;Lee, Dong-Su;Cho, Chang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.656-661
    • /
    • 2000
  • In the recent trend of electric power supply market, a variable pressure operation supercritical once-through steam generator is highlighted as a thermal power plant for cycling load because of its superiority in load regulation. Almost all thermal power plants of the future are expected to be variable pressure operation supercritical once-through units. APESS(Advanced Plant Engineering & Simulation System) is a dynamic simulation software for power plant which is under being developed by Korea Heavy Industries & Construction Co., Ltd. This paper present the introduction of APESS and the result of simulation for variable pressure operation supercritical once-through steam generator.

  • PDF

A GUI Implementation of a Power Plant Dynamic Simulation System on Windows NT/2000 (원도즈 NT/2000에서의 발전플랜트 동특성 해석시스템 그래픽 사용자 인터페이스 구현)

  • 이동수;이기현;조창호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.197-201
    • /
    • 2002
  • APESS(Advanved Plant Engineering & Simulation System) is a dynamic simulation software for power plant which is being developed by Doosan Heavy Industries & Construction Co., Ltd. This Paper represents the GUI implementation of APESS on Windows NT/2000 operating system.

  • PDF

Simulation of Reactor and Turbine Poler Transients in CANDU 6 Nuclear Power Plants

  • Park, Jong-Woon-;Yeom, Choong-Sub;Kim, Sung-Bae-
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.130-137
    • /
    • 1994
  • As a part of developing engineering simulator for CANDU 6 nuclear power plants, present paper gives the tentative simulation results of reactor and turbine power transients including reactor-follow-turbine operation. One point kinetics equations are used for neutron dynamics, iodine and xenon loads. To calculate time-dependent high and low pressure turbine powers and grid frequency deviation, simple first order differential equations are used. In addition, control logics (reactor regulating system, demand power routine, and unit power regulator) used in the plant's process computers have been referenced.

  • PDF

Operation optimization of auxiliary electric boiler system in HTR-PM nuclear power plant

  • Du, Xingxuan;Ma, Xiaolong;Liu, Junfeng;Wu, Shifa;Wang, Pengfei
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2840-2851
    • /
    • 2022
  • Electric boilers (EBs) are the backup steam source for the auxiliary steam system of high-temperature gas-cooled reactor nuclear power plants. When the plant is in normal operations, the EB is always in hot standby status. However, the current hot standby operation strategy has problems of slow response, high power consumption, and long operation time. To solve these problems, this study focuses on the optimization of hot standby operations for the EB system. First, mathematical models of an electrode immersion EB and its accompanying deaerator were established. Then, a control simulation platform of the EB system was developed in MATLAB/Simulink implementing the established mathematical models and corresponding control systems. Finally, two optimization strategies for the EB hot standby operation were proposed, followed by dynamic simulations of the EB system transient from hot standby to normal operations. The results indicate that the proposed optimization strategies can significantly speed up the transient response of the EB system from hot standby to normal operations and reduce the power consumption in hot standby operations, improving the dynamic performance and economy of the system.

Dynamic Simulation of Heat Recovery Steam Generator (폐열회수 보일러의 동특성 시뮬레이션)

  • Lee, Ki-Hyun;Lee, Dong-Su;Cho, Chang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.847-852
    • /
    • 2001
  • A thorough understanding of the transient behavior during load following and start-up is essential in the design and operation of an heat recovery steam generator(HRSG). During this period of time, material that is exposed to high temperature and experiences a large temperature variation is subject to high thermal stress. APESS(Advanced Plant Engineering & Simulation System) is a dynamic simulation software for power plant which is under being developed by Doosan Heavy Industries & Construction Co., Ltd. This paper present the introduction of APESS and the result of simulation for an heat recovery steam generator.

  • PDF

PWSCC and System Engineering Development of Internal Inspection and Maintenance Methodology for RCS

  • Abdallah, Khaled Atya Ahmed;Mesquita, Patricia Alves Franca de;Yusoff, Norashila;Nam, GungIhn;Jung, JaeCheon;Lee, YoungKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.89-103
    • /
    • 2016
  • Due to safety of the plant, it became very clear the importance of study occurrence reactor coolant system (RCS) issues specially the primary water stress corrosion cracking (PWSCC). The Systems Engineering (SE) approach is characterized by the application of a structured engineering methodology for the design of a complex system or component. Robotic devices have been used for internal inspection, maintenance and performing remote welding and inspection in high-radiation areas. In this paper, PWSCC overview and inlay and over lay welding methodology introduced, concept of robotic device that can be inserted into the piping via Steam Generator (SG) main way to access to primary piping of pressurized water reactor (PWR) is developed based on SE methodology. A 3D model of the inspection system was developed along with the APR1400 (Advanced Power Reactor)reactor coolant systems (RCS) and internals with virtual 3D simulation of the operation for visualization to prove the validity of the concept.

Application of Flow Network Models of SINDA/FLUIN $T^{TM}$ to a Nuclear Power Plant System Thermal Hydraulic Code

  • Chung, Ji-Bum;Park, Jong-Woon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.641-646
    • /
    • 1998
  • In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUIN $T^{™}$ has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA).

  • PDF

A Study on Improvement of Nuclear Power Plant Construction System According to Data-centric Design Technique Introduction in Korea (데이터 기반 설계기법 도입에 따른 원전 건설관리체계 개선방향 고찰)

  • Lim, ByungKi;Byon, Sujin
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.108-112
    • /
    • 2016
  • This study is established the data-centric design concept, which is the latest design technique, by analyzing existing study literature for its application on the nuclear power plant industry in Korea. This study investigated the data-centric design cases in the advanced companies and suggests a data-centric design integrated system framework by analyzing the major functions of the commercial 3D CAD system, which is globally used in the plant architect engineering. In order to apply the data-centric design integrated system framework to the nuclear power plant industry in Korea, the main functions of a nuclear power plant design information integrated system framework, which can manage the design products of each EPC step and the related information in integrated way, is suggested by analyzing the supplier design, field design process and field design drawings, which have close relation with the plant Architect Engineering (A/E). It is expected that the result of this study would contribute in the dramatic enhancement in the job efficiency of nuclear power plant design process in Korea.

A Case Study on Designing a Console Design Review System Considering Operators' Viewing Range and Anthropometric Data

  • Cha, Woo Chang;Choi, Eun Gyeong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.373-383
    • /
    • 2017
  • Objective: The aim of this study is to introduce an operator console design review system suitable for designing and evaluating consoles based on human factor guidelines for a digitalized main control room in an advanced nuclear power plant which has a requirement for anthropometric data usage. Background: The system interface of the main control room in a nuclear power plant has been getting digitalized and consists of various consoles with many information displays. Console operators often face human-computer interactive problems due to inappropriate console design stemming from the perceptual constraints of anthropometric data usage. Method: Computational models with a process of visual perception and variables of anthropometric data are used for designing and evaluating operator consoles suitable for human system interface guidelines, which are used in an advanced nuclear power plant. Results: From the computational model and simulation application, console dimensions and a designing test module, which would be used for designing suitable consoles with safety concerns in a nuclear power plant, have been introduced. Conclusion: This case study may influence employing a suitable design concept with various anthropometric data in many areas with safety concerns and may show a feasible solution to designing and evaluating the safety console dimensions. Application: The results of this study may be used for designing a control room with the human factors requiring a safe working environment.