Existing LDA uses the transform matrix that maximizes distance between classes. So we have to convert from an image to one-dimensional vector as training vector. However, in 2D-LDA, we can directly use two-dimensional image itself as training matrix, so that the classification performance can be enhanced about 20% comparing LDA, since the training matrix preserves the spatial information of two-dimensional image. However 2D-LDA uses same calculation schema for transformation matrix and therefore both LDA and 2D-LDA has the heteroscedastic problem which means that the class classification cannot obtain beneficial information of spatial distances of class clusters since LDA uses only data correlation-based covariance matrix of the training data without any reference to distances between classes. In this paper, we propose a new method to apply training matrix of 2D-LDA by using WPS-LDA idea that calculates the reciprocal of distance between classes and apply this weight to between class scatter matrix. The experimental result shows that the discriminating power of proposed 2D-LDA with weighted between class scatter has been improved up to 2% than original 2D-LDA. This method has good performance, especially when the distance between two classes is very close and the dimension of projection axis is low.
In this paper, a novel image projection technique for face recognition application is proposed which is based on linear discriminant analysis (LDA) combined with the relevance-weighted (RW) method. The projection is performed through 2-directional and 2-dimensional LDA, or $(2D)^2$LDA, which simultaneously works in row and column directions to solve the small sample size problem. Moreover, a weighted discriminant hyperplane is used in the between-class scatter matrix, and an RW method is used in the within-class scatter matrix to weigh the information to resolve confusable data in these classes. This technique is called the relevance-weighted $(2D)^2$LDA, or RW$(2D)^2$LDA, which is used for a more accurate discriminant decision than that produced by the conventional LDA or 2DLDA. The proposed technique has been successfully tested on four face databases. Experimental results indicate that the proposed RW$(2D)^2$LDA algorithm is more computationally efficient than the conventional algorithms because it has fewer features and faster times. It can also improve performance and has a maximum recognition rate of over 97%.
Linear Discriminant Analysis (LDA) has been successfully applied for dimension reduction in face recognition. However, LDA requires the transformation of a face image to a one-dimensional vector and this process can cause the correlation information among neighboring pixels to be disregarded. On the other hand, 2D-LDA uses 2D images directly without a transformation process and it has been shown to be superior to the traditional LDA. Nevertheless, there are some problems in 2D-LDA. First, it is difficult to determine the optimal number of feature vectors in a reduced dimensional space. Second, the size of rectangular windows used in 2D-LDA makes strong impacts on classification accuracies but there is no reliable way to determine an optimal window size. In this paper, we propose a new algorithm to overcome those problems in 2D-LDA. We adopt an ensemble approach which combines several classifiers obtained by utilizing various window sizes. And a practical method to determine the number of feature vectors is also presented. Experimental results demonstrate that the proposed method can overcome the difficulties with choosing an optimal window size and the number of feature vectors.
본 논문에서는 얼굴 인식을 위한 새로운 저차원 특징 표현 기법을 제안하였다. 선형판별기법(LDA)는 인기있는 특징추출 기법이다. 하지만 고차원 데이터의 경우에 계산적인 복잡도가 높고 샘플의 개수가 적은 경우 역행렬을 구할 수 없는 특이행렬문제에 직면한다. 이러한 문제들을 해결하기 위해 일반적인 선형판별기법과 다르게 우리는 이차원 이미지 공분산 행렬을 구한 다음 직접선형판별기법(dirct LDA)을 적용하였으며 이것을 2D-DLDA라고 부른다. ORL 얼굴데이터베이스를 사용하여 실험한 결과 기존의 직접선형판별기법보다 성능이 우수함을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권9호
/
pp.2991-3007
/
2022
Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.
주어진 실내 환경에 위치한 여러 장애물에 대한 정보를 사전에 훈련하고 인식하여 로봇의 인지 능력을 향상시키기 위해 스테레오비전 센서의 RGB-D 이미지에서 인텐시티를 기반으로 일정 거리 안에 있는 장애물을 검출하는 기법을 제시한다. RGB-D 인텐시티 정보에 대해 PCA, ICA, LDA, SVM의 주요 패턴인식 알고리즘을 적용하여 인식률 및 실행시간을 구하고, 여러 패턴인식 알고리즘 중에서 어떤 알고리즘이 인식률 및 실행시간 측면에서 적용이 가능한지를 제시한다. 실험결과, RGB-D 데이터와 인텐시티 데이터를 비교한 결과 정확도면에서는 RGB-D 데이터가 4.2% 높은 인식률을 보였으나 훈련시간은 인텐시티 데이터가 RGB-D 이미지에 비해 LDA의 경우 29%, SVM의 경우 31% 빠르게 처리되었으며 테스트시간은 LDA의 경우 70%, SVM의 경우 33% 빠르게 처리되어 모바일 로봇 장애물 인식에 인텐시티 데이터를 사용하는 것이 정확도면에서도 우수하고 처리 속도 면에서 높은 개선효과가 있다.
2차원 물질인 metal mono chalcogenides(MMC) 중 GaS와 GaSe를 대상으로 하여 층과 층 사이의 van der Waals(vdW) 상호작용을 density functional theory(DFT) 계산을 이용해 연구하였다. Local density approximation(LDA)와 generalized gradient approximation (GGA)의 두 가지 다른 exchange correlation functional을 이용하고, 또한 두 개의 층 사이에 작용하는 van der Waals 상호작용을 고려한 LDA-D2, GGA-D2 계산을 수행하였다. 이와 같은 네 가지 방법으로 층간거리를 바꾸어 binding energy curve를 계산하였다. 그 결과 GGA-D2계산이 MMC의 층간 상호 작용을 가장 잘 기술하였다.
자기구조가 복잡한 것으로 알려져 있는 $Cr_2Te_3$의 전자구조와 자기구조를 이론적 방법으로 연구하였다. LDA+U 방법에 의해 Cr-d 전자의 상관효과를 고려해서 계산하면 전자의 상태밀도와 자기모멘트가 국소밀도근사(LDA)에 의한 것보다 실험과 더 잘 일치하는 것을 보였다. 이 과정에서 $Cr_2Te_3$에서 Cr-d 전자의 상관효과의 크기 U=1.7 eV를 구했다. $Cr_2Te_3$의 강자성 상태와 준강자성 상태의 에너지가 같아서 축퇴된다면 실험에서 알려진 Cr의 자기모멘트를 설명할 수 있음을 보였다.
This paper is concerned with Interval Type-2 Radial Basis Function Neural Network classifier realized with the aid of Census Transform(CT) and (2D)2LDA methods. CT is considered to improve performance of face recognition in a variety of illumination variations. (2D)2LDA is applied to transform high dimensional image into low-dimensional image which is used as input data to the proposed pattern classifier. Receptive fields in hidden layer are formed as interval type-2 membership function. We use the coefficients of linear polynomial function as the connection weights of the proposed networks, and the coefficients and their ensuing spreads are learned through Conjugate Gradient Method(CGM). Moreover, the parameters such as fuzzification coefficient and the number of input variables are optimized by Artificial Bee Colony(ABC). In order to evaluate the performance of the proposed classifier, Yale B dataset which consists of images obtained under diverse state of illumination environment is applied. We show that the results of the proposed model have much more superb performance and robust characteristic than those reported in the previous studies.
The electromagnetic properties of heavy fermion $CePd_2Si_2$ are investigated using density functional theory using the local density approximation (LDA) and LDA+U methods. The Ce f-bands are located near the Fermi energy and hybridized with the Pd-3d states. This hybridization plays an important role in generating the physical characteristics of this compound. The magnetic moment of $CePd_2Si_2$ calculated within the LDA scheme does not match with the experimental result because of the strong correlation interaction between the f orbitals. The calculation shows that the specific heat coefficient underestimates the experimental value by a factor of 5.98. This discrepancy is attributed to the formation of quasiparticles. The exchange interaction between the local f electrons and the conduction d electrons is the reason for the formation of quasiparticles. The exchange interaction is significant in $CePd_2Si_2$, which makes the quasiparticle mass increase. This enhances the specific heat coefficient.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.