• Title/Summary/Keyword: (20Z)-ginsenoside $Rh_3$

Search Result 2, Processing Time 0.016 seconds

Preparation and Structure Determination of a New Glycoside, (20E)-Ginsenoside $Rh_3$, and its isomer from Diol-type Ginseng Saponins (인삼의 diol계 사포닌으로부터 새로운 배당체 (20E)-Ginsenoside $Rh_3$ 및 그의 입체이성체의 제조와 구조결정)

  • 김동선;백남인;박종대;이유희;정소영;이천배;김신일
    • YAKHAK HOEJI
    • /
    • v.39 no.1
    • /
    • pp.85-93
    • /
    • 1995
  • Acidic and alkaline hydrolysis of diol-type ginseng saponins produced a new glycoside, (20E)-ginsenoside Rh$_{3}$, and its stereoisomer (20Z)-, which were further subjected to alkaline by drolysis to give their aglycones, (20E)- and (20Z)-3$\beta$, 12$\beta$-dihydroxy-dammar-20(22),24-diene. The ratio of stereoisomeric mixtures was estimated to be ca. 5:1 from intensities of the peaks in $^{1}$H- and $^{13}$C-NMR spectra. The $^{1}$H- and $^{13}$C-NMR signals of ginsenoside Rh$_{3}$, which have remained unclarified, were completely assigned by the extensive application of modern NMR techniques.

  • PDF

20(S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF-α/caspase8 signaling cascades

  • Zhu, Sirui;Liu, Xiaoli;Xue, Mei;Li, Yu;Cai, Danhong;Wang, Shijun;Zhang, Liang
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.295-304
    • /
    • 2021
  • Background: Acute promyelocytic leukemia (APL) is a hematopoietic malignancy driven by promyelocytic leukemia-retinoic acid receptor A (PML-RARA) fusion gene. The therapeutic drugs currently used to treat APL have adverse effects. 20(S)-ginsenoside Rh2 (GRh2) is an anticancer medicine with high effectiveness and low toxicity. However, the underlying anticancer mechanisms of GRh2-induced PML-RARA degradation and apoptosis in human APL cell line (NB4 cells) remain unclear. Methods: Apoptosis-related indicators and PML-RARA expression were determined to investigate the effect of GRh2 on NB4 cells. Z-VAD-FMK, LY294002, and C 87, as inhibitors of caspase, and the phosphatidylinositol 3-kinase (PI3K) and tumor necrosis factor-α (TNF-α) pathways were used to clarify the relationship between GRh2-induced apoptosis and PML-RARA degradation. Results: GRh2 dose- and time-dependently decreased NB4 cell viability. GRh2-induced apoptosis, cell cycle arrest, and caspase3, caspase8, and caspase9 activation in NB4 cells after a 12-hour treatment. GRh2-induced apoptosis in NB4 cells was accompanied by massive production of reactive oxygen species, mitochondrial damage and upregulated Bax/Bcl-2 expression. GRh2 also induced PML/PML-RARA degradation, PML nuclear bodies formation, and activation of the downstream p53 pathway in NB4 cells. Z-VAD-FMK inhibited caspase activation and significantly reversed GRh2-induced apoptosis and PML-RARA degradation. GRh2 also upregulated TNF-α expression and inhibited Akt phosphorylation. LY294002, an inhibitor of the PI3K pathway, enhanced the antitumor effects of GRh2, and C 87, an inhibitor of the TNF-α pathway, reversed NB4 cell viability, and GRh2-mediated apoptosis in a caspase-8-dependent manner. Conclusion: GRh2 induced caspase-dependent PML-RARA degradation and apoptosis in NB4 cells via the Akt/Bax/caspase9 and TNF-α/caspase8 pathways.