• Title/Summary/Keyword: (반)일주조

Search Result 6, Processing Time 0.017 seconds

Method for improving calculation of nonharmonic constants of tidal stations in Korea (한국연안의 비조화상수 개선에 관한 연구)

  • Kim, Yeong-Taek;Yu, Hak-Ryeol;Lee, Eun-Il
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.59-62
    • /
    • 2010
  • The limitation of constant for tide correction is identified using the T_tide $MATLAB^{(R)}$ package. A suggestion is presented in calculation of local phase lag(k) by a/15 (a is angular speed of any constituent in degree) from the g, phase lag measured by standard time meridian latitude.

  • PDF

Characteristics of Tidal Current and Tidal Residual Current in the Archipelago Around Aphae Island in the Southwestern Waters of Korea (한국 서남해 압해도 주변 다도해역의 조류 및 조석잔차류 분포)

  • Choo, Hyo-Sang;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.179-187
    • /
    • 2018
  • In order to understand the flow of currents around Aphae Island and the surrounding Archipelago, the numerical model experiments on tidal currents and tide-induced residual currents were carried out. Dominant semidiurnal tidal currents have a reversing form and flow along the narrow channels of the archipelago. During periods of flood, currents flow from the west of Hwawon Peninsula to the archipelago to the northwest together with the currents flowing from the channels at Palgeum Island to Amtae Island and Amtae Island to Jeung Island. Ebb currents flow from the northwest archipelago to the channel of Amtae Island and Jeung Island as well as Amtae Island to Palgeum Island, further flowing south between Palgeum Island and Hwawon Peninsula. Flood currents are separated from east and west at the southern coast of Aphae Island, but flow south from both the west and east of Aphae Island to the channel found between Palgeum Island and Hwawon Peninsula at ebb. Flow speed is high between Amtae Island and Aphae Island where the flows meet and join. Lee wakes or topographical eddies are formed around the islands due to the high speed of the currents flowing along the narrow channel in the archipelago, manifesting as a tide-induced residual current. A weak cyclonic wake and anti-cyclonic eddy both exist at the west and northwestern coast of Aphae Island individually. The speed of the tide-induced residual current become slow on account of the wide littoral zone at exists around Aphae Island.

Tidal Current in the Western Part of Deukryang Bay in Summer 1992 (1992년 하계 득량만 서부해역의 조류 특성)

  • LEE Jae Chul;RHO Hong-Kil;CHO Kyu-Dae;SHIN Sang-Il;KIM Sang-Woo;KIM Sang-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 1995
  • A recording current meter was deployed in the shallow western part of Deukryang Bay from 1 July to 7 August 1992 during which the wind was weak. Principal component in NNE-SSW direction parallel to the axis of the bay had $98.7\%$ of the total variance and the orthogonal component of only $1.3\%$. Spectral analysis of the principal component revealed that the semidiurnal component comprised about $91.2\%$ of total energy. Whereas the diurnal and longer components were less than $2.5\%$ the shallow water tide was about $6.3\%$ . Weak mean current of 0,8cm/sec in SSE direction implies that the slow circulation in the bay is counterclockwise having the northward net flow in the deep eastern part.

  • PDF

Spatial and Temporal Variations of Phytoplankton in Ch$\check{o}$nsu Bay (천수만 식물 플랑크톤의 공간적, 시간적 변화)

  • Shim, Jae Hyung;Yeo, Hwan Goo
    • 한국해양학회지
    • /
    • v.23 no.3
    • /
    • pp.130-145
    • /
    • 1988
  • Spatial distribution and temporal variations of phytoplankton population were investigated in Ch$\check{o}$nsu Bay, the Korean western coast. Diurnal fluctuations of phytoplankton standing crop are associated with semidiurnal tidal cycle, as high concentration at low tide and low at high tide. In monthly variations of phytopolankton standing crop, the 1st peak occurrs in March and the 2nd one in August. The study area could be divided into two parts, outer bay and inner bay according to the physical and biological factors such as water temperature and salinity, and phytoplankton distribution patterns. The northern waters of the bay, however, may be affected by irregular fresh water influx through the lock of the dike. Because of the hydrographical differences among the surveyed stations, phytoplankton species succession patterns of each station have some differences. On the whole in this study area, Paralia sulcata and Skeletonema costatum are dominant species all the year round. However, except June, Paralia sulcata, a tychopelagic diatom is not dominant species at Station 6 (northern end of the bay). This seems to be caused by the fact that the waters of northern part of the bay is less turbulent than that of the outer bay. The result of principal component analysis (PCA) indicates that Ch$\check{o}$nsu Bay is normal coastal ecosystem where the environmental conditions are cycled in a year, and water temperature and nitrogenous nutrients such as nitrate, nitrite and ammonia are major factors to influence the annual cycle of environmental conditions.

  • PDF

A Study on the Characteristics of Summer Water Temperature Fluctuations by Spectral Analysis in Coast of Korea in 2016 (스펙트럼 분석을 통한 2016년 하계 한국연안의 수온변동 특성에 관한 연구)

  • Seo, Ho-San;Jeong, Yong-Hyun;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.186-194
    • /
    • 2020
  • In this study, spectral analysis was conducted to identify environmental factors af ecting short-term changes in water temperature in the East, West and South coasts of Korea. The data used in the spectrum analysis is the 2016 summer water temperature, air temperature, tide level and wind data provided by Korea Hydrographic & Oceanographic Agency. In power spectrum results, peaks of water temperature and tide level were observed at same periods in West Sea (Incheon, Pyeungteak, Gunsan and Mokpo) and South Sea (Wando, Goheung, Yeosu, Tongyeong and Masan) where mean tidal range was more than 100 cm. On the other hand, periodicity of water temperature did not appear in East Sea and Busan where the mean tidal range was small. Coherence analysis showed that water temperature was highly correlated with tide in West Sea and three stations(Wando, Goheung and Tongyeong) of South Sea. Especially, correlation between water temperature and tide level in Wando and Tongyeong presented 0.96 at semi-diurnal period. Water temperature in Yeosu seems to have influenced by tide and inflow of fresh water. In Masan, water temperature is influenced by south wind, tide and inflow of fresh water. In East Sea, influence of tide on water temperature is small due to current and small tidal range. As a result of comparing the time series graph, stations where the correlation between water temperature and tide is high show that relatively cold water was inputted at flood tide and flow out at ebb tide. short-term variation of water temperature was affected by tide, but long-term variation over a month was affected by air temperature.

Variations of Temperature and Salinity in Kugum Suro Channel (거금수로 해역의 수온과 염분의 변동)

  • CHOO Hyo-Sang;LEE Gyu-Hyong;YOON Yang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.252-263
    • /
    • 1997
  • Temperature and salinity were observed in Kugum Suro Channel in February, April, August and October 1993. Temperature ranged from $7.0^{\circ}C\;to\;25.0^{\circ}C$ throughout the year and its variation was about $18^{\circ}C$. The maximum temperature difference between surface and bottom was less than $0.75^{\circ}C$ for a year, which meant that the temperature stratification in Kugum Suro Channel was considerably week. Salinity had also a small variation range of less than $0.5\%_{\circ}$. Salinity varied from $34.0\%_{\circ}$ in April to $30.0\%_{\circ}$ in August and its fluctuation patterns were quite similar to the seasonal variations of the precipitation and the duration of sunshine observed at Kohung Weather station. Seasonal variation of sea water density in T-S diagram showed that the water mass in Kugum Suro Channel could be largely affected by regional atmospheric conditions. Temperature increased in ebb tide and decreased in flood tide, but salinity decreased in ebb tide and increased in flood tide for a day. The period of fluctuations in temperature and salinity measured for 25 hours was nearly coincident with the semi-diurnal tide which was predominant in that region. Stratification parameters computed in Kugum Suro Channel areas were less than $4.0J/m^3$ the year round, which indicated that vortical mixing from the bottom boundary caused by tidal current played an important role in deciding the stratification regime in Kugum Suro Channel. In estimating the equation which defines stratification and mixing effects in the observed areas, the tidal mixing term ranged from $4.7J/M^3\;to\;14.1J/m^3$ was greater than any other terms like solar radiation, river discharge and wind mixing.

  • PDF