• Title/Summary/Keyword: (${\alpha},{\beta},{\gamma}$)-derivation

Search Result 2, Processing Time 0.017 seconds

STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C*-ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION

  • Eghbali, Nasrin;Hazrati, Somayeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.101-113
    • /
    • 2016
  • In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.

Non-Newtonian Intrinsic Viscosities of Biopolymeric and Nonbiopolymeric Solutions (I)

  • Jang, Chun-Hag;Kim, Jong-Ryul;Ree, Tai-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.318-324
    • /
    • 1987
  • Experimental results for viscous flow of poly (${\gamma}$ -methyl L-glutamate) solutions have been published elsewhere. The data of $[{\eta}]^f / [{\eta}]^0$ are expressed by the following equation, $\frac{[{\eta}^f]}{[{\eta}^{\circ}]}=1-\frac{A}{\eta^\circ}{1-\frac{sin^{-1}[{\beta}_2(f/{\eta}_0)\;{e}xp\;(-c_2f^2/{\eta}_0^2kT)]}{{\beta}_2f/{\eta}_0}$ (A1) where $[{\eta}]^f\; and\; [{\eta} ]^0$ are the intrinsic viscosity at shear stress f and zero, respectively, $ A{\equiv}lim\limits_{C{\rightarrow}0}[(1/C)(X_2/{\alpha}_2)({\beta}_2/{\eta}_0)],{\eta}_0$ viscosity of the solvent, ${\beta}_2$ is the relaxation time of flow unit 2, $c_2$ is a constant related to the elasticity of flow unit 2. The theoretical derivation of Eq.(A1) is given in the text. The experimental curves of $[{\eta}]^f / [{\eta}]^0$ vs. log f are compared with the theoretical curves calculated from Eq.(A1) with good results. Eq.(A1) is also applied to non-biopolymeric solutions, and it was found that in the latter case $c_2 = 0.$ The reason for this is explained in the text. The problems related to non-Newtonian flows are discussed.