• Title/Summary/Keyword: ($\alpha$,$\delta$)-Armendariz rings

Search Result 2, Processing Time 0.013 seconds

ON (α, δ)-SKEW ARMENDARIZ RINGS

  • MOUSSAVI A.;HASHEMI E.
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.353-363
    • /
    • 2005
  • For a ring endomorphism $\alpha$ and an $\alpha$-derivation $\delta$, we introduce ($\alpha$, $\delta$)-skew Armendariz rings which are a generalization of $\alpha$-rigid rings and Armendariz rings, and investigate their properties. A semi prime left Goldie ring is $\alpha$-weak Armendariz if and only if it is $\alpha$-rigid. Moreover, we study on the relationship between the Baerness and p.p. property of a ring R and these of the skew polynomial ring R[x; $\alpha$, $\delta$] in case R is ($\alpha$, $\delta$)-skew Armendariz. As a consequence we obtain a generalization of [11], [14] and [16].

ON ANNIHILATOR IDEALS OF A NEARRING OF SKEW POLYNOMIALS OVER A RING

  • Hashemi, Ebrahim
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1267-1279
    • /
    • 2007
  • For a ring endomorphism ${\alpha}$ and an ${\alpha}-derivation\;{\delta}$ of a ring R, we study relation between the set of annihilators in R and the set of annihilators in nearring $R[x;{\alpha},{\delta}]\;and\;R_0[[x;{\alpha}]]$. Also we extend results of Armendariz on the Baer and p.p. conditions in a polynomial ring to certain analogous annihilator conditions in a nearring of skew polynomials. These results are somewhat surprising since, in contrast to the skew polynomial ring and skew power series case, the nearring of skew polynomials and skew power series have substitution for its "multiplication" operation.