• Title/Summary/Keyword: 'Energy and Transportation Technology' unit

Search Result 20, Processing Time 0.026 seconds

Thermal Performance of the Show-Case Cooler Using Ice Slurry Type Storage System (아이스슬러리형 축냉시스템을 이용한 쇼케이스 냉각장치의 열적성능에 관한 실험적 연구)

  • Lee, Dong-Won;Kim, Jeong-Bae
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.26-29
    • /
    • 2011
  • A promising alternative technology is the potential use of ice slurries as a secondary refrigerant in conventional cooling process. Ice slurries behave almost like a liquid and can be pumped through pipes although the energy capacity of ice slurries per unit volume is considerably higher than that for chilled water or brine due to the latent heat capacity of the ice particles. To give the basic data for the design of cooling systems using ice slurries, experimental study has been conducted to find out the performance of the cooling coil of show-case with ice slurries. Despite the fact that ice slurries entering the cooling coil had at least $5^{\circ}C$ higher temperature than that of R22, it was still capable of providing a similar cooling performance than that obtained with R22.

Gas Hydrate Supply Chain analyses of economy for the natural gas transportation (천연가스 수송을 위한 Gas Hydrate Supply Chain의 경제성 분석)

  • Kim, Cheoulho;Lee, Jaeik;Jeong, Taeseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.151.1-151.1
    • /
    • 2010
  • Natural gas hydrates (NGH) provide 170 gas volumes per unit volume of the medium and are easier to make with moderate pressure and temperature (40 bar at 3 C). Once they form, their preservation temperature is 20 C at 1 bar, which is much milder than the LNG preservation. In case of using the NGH, The small and medium sized gas well has advantages for development because of NGH's these characteristics. According to the cost evaluation report of Gudmundsson in Norway and the research of MES in Japan, the gas well that uses the NGH has a cost saving effect about 10~20% compared LNG. The effect depends on distance and production. However, cost saving and efficiency of liquefaction process is increased by the development of LNG liquefaction technology. Therefore, these factors have to be reflected in economic analysis. The purpose of this research is to compare the cost of Gas Supply Chain according to the transport type, distance and gas reserves. Especially, we consider not only the cost of facility but also the total cost (production cost, transport cost, etc).

  • PDF

Life cycle analysis of concrete and asphalt used in road pavements

  • lvel, Jocelyn;Watson, Rachel;Abbassi, Bassim;Abu-Hamatteh, Ziad Salem
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.52-61
    • /
    • 2020
  • The article examines the impact differences between producing concrete and asphalt. Both materials are widely used in the construction industry. Construction activities account for a large portion of greenhouse gases. Therefore, it is important to consider the Life Cycle Analysis (LCA) to reduce environmental impacts. In this study, the material processes were inputted into an LCA program called SimaPro. The database used for the study was Ecoinvent as it is one of the major databases within SimaPro. The materials were compared against impacts per kg of material produced as the functional unit. Each process was created using the materials, energy and transportation required to produce the materials. Waste streams were also included in the process to determine the impacts after the product was done with its useful life. Using the ReCiPe method, an LCA was conducted. Midpoint and endpoint categories were examined for both the productions. The processes had similar results for the human health and ecosystems categories; however asphalt was marginally higher for both. Asphalt had exceeded concrete in the resource impact category by 100 mPt. The results indicate that concrete is the more sustainable building material. Determination of various impacts of the materials is important for material selection.

Analysis of the Critical Thinking of Technology Activities in Technology-Home Economics Textbooks in Middle School (중학교 기술·가정교과서 기술 활동과제의 비판적 사고 분석)

  • Chong, HaeYoung;Kim, KiSoo
    • 대한공업교육학회지
    • /
    • v.45 no.2
    • /
    • pp.70-85
    • /
    • 2020
  • The purpose of this study is to analyze the critical thinking level of activities in technology textbooks. For this purpose, we sampled 5 Technology-Home Economics textbooks of the 2015 revised curriculum and selected 187 activities in the textbooks. The main results of this study are as follows. First, the total score of the critical thinking level is 67.3, which is not high enough. The result of analyzing in the critical thinking level according to unit indicates that activities in units 'Construction(72.8)', 'Invention & Standard(70.4)', and 'Biotechnology & Appropriate Technology(70.4)' are higher score than those in other units, but activities in units 'Transportation & Energy(67.0)', 'Manufacturing(66.1)', and 'Information & Communication(57.0)'units are inadequate for inducing critical thinking. Second, the result of analyzing in the critical thinking level according to type of activity indicates that there is a difference between activities of 'theoretical type(69.3)' and 'practical type(61.5)'. Moreover activities in 'theoretical type' are inadequate for inducing critical thinking.

Investigation on Sorting Efficiency for Recyclable Materials and Its Improvement Measure at Domestic Sorting Facility (국내 재활용품 선별시설에서 선별 현황 및 개선방안)

  • Kim, Joo-Sin;Pak, Daewon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.15-26
    • /
    • 2017
  • This study was conducted to investigate and analyze the discharge characteristics of recyclable material from S-city, S-district, in order to improve the sorting efficiency in recycling sorting facility. The characteristics of recyclable materials collected were analyzed in three different scopes; source origin, collection and transportation, and sorting steps. The average of recyclable waste generation is $0.121kg/day^*man$. Regional collection period appears to be three times a week, and the density of mixed recyclable wastes showed the average of $202.4kg/m^3$ in the waste collection vehicle. In the analysis into the sorting steps, the average of carrying amount of mixed recycling products is 1,154.6 ton/month, the average of appeared density is $181kg/m^3$, the average amount of separated recycling products is 448.5kg/month, and the density of recycling residue is found out to be $48kg/m^3$. The sorting rate of recyclable material is 38.85% and the percentage of residues is 55.90%. Out of 7,744.8 tons of the total recyclable residues, 4,272.1 tons were found out to be possible recylable materials. As a result of increasing the recycling rate of residues, the encouragement of base-recycling, the automation and retrofit of sorting equipment, and energy recovery from recycling residue were discussed.

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Comparison of Construction Cost Applied by RC and PC Construction Method for Apartment House and Establishment of OSC Economic Analysis Framework (공동주택 RC 및 PC공법 적용 공사비 비교 및 OSC의 포괄적 경제성 분석 프레임워크 구축)

  • Yun, Won-Gun;Bae, Byung-Yun;Kang, Tai-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.30-42
    • /
    • 2022
  • OSC is a type of supply chain and value chain that spans the entire process of construction production (planning, design, construction, maintenance, etc.). It is a method of producing the final object by manufacturing it in a factory, transporting it to the site, installing and construction. This research as is the construction cost was compared for each case A, which applied the PC method, and case B, which applied the RC method. In the case of applying the PC method (excluding the PC design cost), compared to the case where only the RC method was applied, the frame construction cost per unit quantity (m3) increased by about 70% (50% based on the total RC construction type). Of the total frame construction cost of PC method application, PC accounted for 90.2%, 'PC manufacturing cost' 54.8%, 'PC assembly cost' 28.5%, and 'transportation cost' accounted for 6.89%. Also a decision-making framework that can consider both costs and benefits was established. In the case of benefits, the construction period, defect repair, disaster occurrence, energy efficiency, noise/dust/waste, and greenhouse gas emission indicators reflecting OSC technical advantages were presented. It can contribute to providing a basis for helping decision-making on the introduction of PC apartment houses using OSC.

Assessment of Carbon Emission for Quantification of Environmental Load on Structural Glued Laminated Timber in Korea (국산 구조용 집성재의 환경부하 정량화를 위한 온실가스 배출량 분석)

  • Chang, Yoon-Seong;Kim, Sejong;Son, Whi-Lim;Lee, Sang-Joon;Shim, Kug-Bo;Yeo, Hwanmyeong;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.449-456
    • /
    • 2016
  • This study was aimed to quantify the amount of carbon dioxide emissions and to suggest suitable plans which consider the carbon emission reduction in the manufacturing process of the domestic structural glued laminated timber. Field investigation on two glued laminated timber manufacturers was conducted to find out material flow input values such as raw materials, transportation, manufacturing process, and energy consumption during manufacturing process. Based on the collected data and the relevant literatures about life cycle inventory (LCI), the amount of carbon dioxide emission per unit volume was quantified. Results show that the carbon dioxide emissions for sawing, drying and laminating process are 31.0, 109.0, 94.2 kg $CO_2eq./m^3$, respectively. These results show 13% lesser amount of total carbon dioxide emissions compared with the imported glued laminated timber in Korea. Furthermore, it was decreased about 37% when the fossil fuel would be replaced with biomass fuel in drying process. Findings from this study is effectively used as the basic data on the life cycle assessment of wooden building.

Development of Detailed Design Automation Technology for AI-based Exterior Wall Panels and its Backframes

  • Kim, HaYoung;Yi, June-Seong
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1249-1249
    • /
    • 2022
  • The facade, an exterior material of a building, is one of the crucial factors that determine its morphological identity and its functional levels, such as energy performance, earthquake and fire resistance. However, regardless of the type of exterior materials, huge property and human casualties are continuing due to frequent exterior materials dropout accidents. The quality of the building envelope depends on the detailed design and is closely related to the back frames that support the exterior material. Detailed design means the creation of a shop drawing, which is the stage of developing the basic design to a level where construction is possible by specifying the exact necessary details. However, due to chronic problems in the construction industry, such as reducing working hours and the lack of design personnel, detailed design is not being appropriately implemented. Considering these characteristics, it is necessary to develop the detailed design process of exterior materials and works based on the domain-expert knowledge of the construction industry using artificial intelligence (AI). Therefore, this study aims to establish a detailed design automation algorithm for AI-based condition-responsive exterior wall panels and their back frames. The scope of the study is limited to "detailed design" performed based on the working drawings during the exterior work process and "stone panels" among exterior materials. First, working-level data on stone works is collected to analyze the existing detailed design process. After that, design parameters are derived by analyzing factors that affect the design of the building's exterior wall and back frames, such as structure, floor height, wind load, lift limit, and transportation elements. The relational expression between the derived parameters is derived, and it is algorithmized to implement a rule-based AI design. These algorithms can be applied to detailed designs based on 3D BIM to automatically calculate quantity and unit price. The next goal is to derive the iterative elements that occur in the process and implement a robotic process automation (RPA)-based system to link the entire "Detailed design-Quality calculation-Order process." This study is significant because it expands the design automation research, which has been rather limited to basic and implemented design, to the detailed design area at the beginning of the construction execution and increases the productivity by using AI. In addition, it can help fundamentally improve the working environment of the construction industry through the development of direct and applicable technologies to practice.

  • PDF