• Title/Summary/Keyword: %EC%B6%94%EC%B6%9C

Search Result 3, Processing Time 0.025 seconds

Changes of Soil Salinity due to Flooding in Newly Reclaimed Saline Soil (신간척지 토양에서 담수에 의한 토양염도 변화에 대한 개관)

  • Ryu, J.H.;Yang, C.H.;Kim, T.K.;Lee, S.B.;Kim, S.;Baek, N.H.;Choi, W.Y.;Kim, S.J.;Chung, D.Y.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.45-46
    • /
    • 2009
  • This study was carried out to identify the changes of EC during desalinization due to flooding in newly reclaimed saline soil. To do this, experimental plots were made of rotary tillage+water exchanging plot, flooding plot and rainfall flooding plot. In rotary tillage+water exchanging plot, drainage, rotary tillage and flooding were conducted at the interval of 7 days. In rotary tillage+water exchanging plot and flooding plot, plots were irrigated at the height of 10 cm. After 38 days desalinization, changes of EC values at top soil (0~20 cm) were as follows. In rotary tillage+water exchanging plot, EC decreased from $21.38dS\;m^{-1}$ to $2.16dS\;m^{-1}$ and in flooding plot, EC decreased from $13.97dS\;m^{-1}$ to $2.22dS\;m^{-1}$. In rotary tillage+water exchanging plot and flooding plot, EC values decreased below the EC criterion ($4.0dS\;m^{-1}$) of saline soil. In rainfall flooding plot, EC values decreased or increased according to amounts of rainfall and rainfall time. After 38 days, EC decreased from $16.7dS\;m^{-1}$ to $12.35dS\;m^{-1}$. In flooding plot, changes of EC due to soil depth were investigated. After 38 days desalinization, changes of EC due to soil depth were as follows. At 0~10 cm depth, EC value decreased from $13.08dS\;m^{-1}$ to $0.74dS\;m^{-1}$ (94.3% of salt was desalinized). At 10~20 cm depth, EC value decreased from $14.80dS\;m^{-1}$ to $3.69dS\;m^{-1}$ (75.2% of salt was desalinized). At 20~30 cm depth, soil was desalinized slowly compared with upper soil, EC value decreased from $13.57dS\;m^{-1}$ to $6.93dS\;m^{-1}$ (48.9% of salt was desalinized).

Fabrecation and Characterization of $SrBi_2TaNbO_9$ Ferroelectric Thin Film Prepared by Sol-Gel Method (SOL-GEL법을 이용한 $SrBi_2TaNbO_9$ 강유전성 박막 제조 및 특성 평가)

  • 이진한;박상준;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.94-98
    • /
    • 2000
  • Polycrystalline SBTN ferroelectric thin films were prepared by sol-gel method with various Nb mole ratios on Pt/ $SiO_2$/Si (100) substrates. The films were annealed at different temperatures and characterized in terms of phase and microstructure. Relatively a well saturated hysteresis pattern was obtained at x =0.2 in S $r_{0.8}$B $i_{2.3}$(T $a_{1-x}$ N $b_{x}$)$_2$ $O_{9+}$$\alpha$/ thin films. At an applied voltage of 5V, the dielectric constant ($\varepsilon$$_{r}$) and dissipation factor (tan $\delta$) of typical S $r_{0.8}$B $i_{2.3}$(T $a_{1-x}$ N $b_{x}$)$_2$ $O_{9+}$$\alpha$/ thin film (x=0.2) were about 236.2 and 0.034. Measured remanent polarization (2Pr) and coercive field (Ec) were 4.28C/c $m_2$, and 38.88kv/cm respectively. No fatigue was observed up to 6$\times$10$_{10}$ switching cycles at 5V and the normalized polarization reduced by a factor of only 4%.%. 4%.%. 4%.%.%.%.%.

  • PDF

The Characterization of PM, PM10, and PM2.5 from Stationary Sources (고정배출원의 먼지 크기별 (PM, PM10, PM2.5) 배출 특성 연구)

  • Kim, JongHo;Hwang, InJo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.6
    • /
    • pp.603-612
    • /
    • 2016
  • The objective of this study was to estimate the emission characteristics for PM, $PM_{10}$, and $PM_{2.5}$ in the various stationary sources. The particulate matters collected in the various stationary sources such as power plants (Coal and B-C oil), incinerators(municipal and industrial waste), and glass furnaces. The PM and $PM_{10}$, PM and $PM_{2.5}$, $PM_{10}$ and $PM_{2.5}$ samples were collected using the cyclone type $PM_{10}$, $PM_{2.5}$ samplers and 30 species(19 inorganic species, 9 ionic species, OC and EC) were analyzed by ICP, IC, and TOR/IMPROVE methods. The mass concentrations of PM, $PM_{10}$, $PM_{2.5}$ from nine stationary sources ranged $0.63{\sim}9.58mg/Sm^3$, $0.26{\sim}7.47mg/Sm^3$ and $0.13{\sim}6.34mg/Sm^3$, respectively. The level of $PM_{10}$, $PM_{2.5}$ portion in PM calculated 0.63~0.99, 0.38~0.94, respectively. In the case of emission trend for species, power plant showed high concentrations for Al, Mg, Na, Si, V and $SO_4{^{2-}}$, respectively. Also, Ca, Fe, K, Si, $Cl^-$, and $K^+$ showed high in incinerator. In the case of glass furnace, Na, Pb, K, Si, $Na^+$ and $SO_4{^{2-}}$ represented high concentrations. Power plant showed higher EC/OC concentrations than other sampling sites. These results suggest the possible role for complement establishment process of emission inventory and emission management for PM.