• Title/Summary/Keyword: %24LaFeO_3%24

Search Result 15, Processing Time 0.029 seconds

The Geochemistry of Yuksipryeong Two-Mica Leucogranite, Yeongnam Massif, Korea (영남육괴내 육십령 복운모화강암에 대한 지화학적 연구)

  • Koh, Jeong-Seon;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.119-134
    • /
    • 2003
  • Yuksipryeong two-mica granite presents strongly peraluminous characteristics in both mineralogy and geochemistry. It has high aluminum saturation index with 1.15∼l.20 and high corundum with 2.20∼2.98 wt% CIPW norm. As the color index is <16% and FeO$\^$T/+ MgO + TiO$_2$is average 1.9 wt%, it corresponds to leucogranite. Yuksipryeong two-mica leucogranite shows negative linear trend for TiO$_2$, Al$_2$O$_3$, FeO, Fe$_2$O$_3$, MgO, CaO, K$_2$O, P$_2$O$\_$5/, Rb, Ba, and Sr as SiO$_2$increases, and the positive relation of Zr and Th, which result from feldspar, biotite, apatite and zircon fractionation. Pegmatitic dike has higher SiO$_2$and P$_2$O$\_$5/, but lower another major elements. Yuksipryeong two-mica leucogranite has lower Rb, but higher Ba and Sr than Manaslu, Hercynian two-mica leucogranites, and S-type granites in Lachlan Fold Belt. Pegmatitic dike has higher Rb and Nb but lower Ba, Sr, Zr, Th, and Pb contents than Yuksipryeong two-mica leucogranite, resulting in removing or mobilizing for some trace elements from the granitic melt. Yuksipryeong two-mica leucogranite has total REEs with 95.7∼l23.3 ppm, and chondrite-normalized REE pattern is very steep ((La/Yb)$\_$N/ = 6.9∼24.8), light REEs (LREEs)-enriched End heavy REEs (HREEs)- depleted pattern with low to moderate Eu anomalies (Eu/Eu*= 0.7∼0.9). While pegmatitic dike has low total REEs with 7.0 ppm, and chondrite-normalized REE pattern is flat-pattern ((La/Yb)$\_$N/ = 2.1) with strong negative Eu anomalies (Eu/Eu*= 0.2). The melt compositions having formed two-mica leucogranites depend on not only the source rock but also the amounts of the residual remaining after melting of source rocks. The CaO/Na$_2$O and Rb/Sr-Rb/Ba ratios depend mainly on the composition of source rocks in the strongly peraluminous granite, that is, plagioclase/clay ratio of the source rocks. Yuksipryeong two-mica leucogranite has higher CaO/Na$_2$O and lower Rb/Sr-Rb/Ba ratios than Manaslu and Hercynian two-mica leucogranites (Millevaches and Gueret) derived from clay-rich, plagioclase-poor (polite), which suggest that the probable source rocks for Yuksipryeong two-mica leucogranite is clay-poor, plagioclase-rich quartzofeldspathic rocks. As the concentrations of Al$_2$O$_3$remain nearly constant but those of TiO$_2$increases as increasing temperature in the strong peraluminous melt, the Al$_2$O$_3$/TiO$_2$ratio may reflect relative temperature at which the melts have formed. Comparing the polite-derived Manaslu and Hercynian two- mica leucogranites, Manaslu two-mica leucogranite has higher Al$_2$O$_3$/TiO$_2$ratio than latter, and its melt have formed at relatively lower temperature ($\leq$ 875$^{\circ}C$) than Hercynian two-mica leucogranites. Likewise, comparing the quartzofeldspathic rock-derived granites, Yuksipryeong two-mica granite has higher Al$_2$O$_3$/TiO$_2$, ratio than S-type granites in Lachlan Fold Belt (>875$^{\circ}C$). The melt formed Yuksipryeong two-mica leucogranite are considered to have been formed at temperature at below the maximum 875$^{\circ}C$C$.

Preparation of Perovskite Catalysts and Its Application to Methane Combustion (페롭스카이트 촉매의 제조와 메탄 산화에 응용)

  • Hahm, Hyun-Sik;Kim, Kyu-Sung;Ahn, Sung-Hwan;Shin, Ki-Seok;Kim, Song-Hyoung;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • Methane combustion over perovskite catalysts was investigated. For the preparation of catalysts, Co, Mn, Fe, and Ni were used as B-site components of the perovskite catalysts $(ABO_3)$ and La was used as A-site component. The effect of calcination temperature on methane combustion and perovskite structure was also investigated. The structure of perovskites, surface area, and adsorbed oxygen species were tested with XRD, BET apparatus, and $O_2-TPD$, respectively. The formation of perovskite structure was affected by the calcination temperature. The catalyst desorbing oxygen at a lower temperature showed better activity for the methane combustion, therefore, the oxygen species desorbing at lower temperatures is responsible for the methane combustion.

The Origin of Radioactive Elements Found in Groundwater Within the Chiaksan Gneiss Complex: Focusing on the Relationship with Minerals of the Surrounding Geology (치악산 편마암 복합체에 분포하는 지하수 내 함유된 방사성 원소의 기원: 주변 지질을 구성하는 광물과의 연관성을 중심으로)

  • Kim, Hyeong-Gyu;Lee, Sang-Woo;Kim, Soon-Oh;Jeong, Do-Hwan;Kim, Moon-Su;Kim, Hyun-Koo;Jeong, Jong Ok
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.153-168
    • /
    • 2022
  • Petrological and mineralogical analyses were conducted to identify minerals containing radioactive elements (uranium) in the Chiaksan gneiss complex and to confirm their association with the surrounding groundwater. Fourteen minerals were identified through the microscopic and electron microscopy (SEMEDS) investigation. The principal minerals included plagioclase, biotite, quartz, alkali feldspar, chlorite, and calcite. Minor minerals were sphene, allanite, apatite, zircon, thorite, titanite, pyrite, and galena. A small amount of thorite was observed in the size of ~1 mm within macrocrystalline allanite. Allanite, which includes a large amount of rare earth elements, appeared in three distinctive patterns. The results of the EPMA analyses indicated that macrocrystalline allanite had higher elemental contents of TiO2~1.70 wt.%, Ce2O3~11.86 wt.%, FeO ~13.31 wt.%, MgO ~0.90 wt.% and ThO2 ~1.06 wt.% with the lowest average content of Al2O3 17.35 ± 2.15 wt.% (n = 7), CaO 12.13 ± 1.81 wt.% (n = 7). An allanite existing at the edge of the sphenes encompassing titanites had a higher element content of Al2O3 ~24.00 wt.%, Nd2O3 ~5.10 wt.%, Sm2O3~0.66 wt.%, Dy2O3~0.86 wt.% and Y2O3~1.38 wt.% with the lowest average content of TiO2 0.35 ± 0.21 wt.% (n = 11), Ce2O3 5.25 ± 1.03 wt.% (n = 11), FeO 9.84 ± 0.26 wt.% (n = 11), MgO 0.12 ± 0.05 wt.% (n = 11), and La2O3 1.49 ± 0.29 wt.% (n = 11). Allanites in a matrix of parental rocks exhibited intermediate values between the two elemental compositions mentioned above. None of the uranium-rich minerals were observed in the migmatitic gneiss within the study area. Consequently, the origin of uranium in the groundwater was not associated with the geology of the surrounding environment, but our investigation proved the existence of abundant allanites containing significant amounts of radioactive thorium and rare earth elements.

Geochemical Characteristics of Allanite from Rare Metal Deposits in the Chungju Area, Chungcheongbuk-Do (Province), Korea (충주지역 희유원소광상에서 산출되는 갈렴석의 지구화학적특성)

  • Park, Maeng-Eon;Kim, Gun-Soo;Choi, In-Sik
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.545-559
    • /
    • 1996
  • Rare metal (Nb-Zr-REE) ore deposits are located in the Chungju area. Geotectonically, the rare metal ore deposits are situated in the transitional zone between Kyeonggi massif and Okcheon belt. The rare metal deposits are distributed in Kyemyeongsan Formation which consist of schist and alkaline igneous rocks. Alkali granite has suffered extensive post-magmatic metasomatism and hydrothermal processes. The ore contains mainly Ce-La, Ta-Nb, Y, Y-Nd, Nd-Th group minerals. More than 15 RE and REE minerals are found in the ore deposits. Allanite, one of the Ce-La rich REE minerals belonging to the epidote group, is the most common mineral in the studied area. The allanite- bearing rocks may be devided into seven types by features of occurrence and mineral associations; zircon type (ZT), allanite-vein type (AT), feldspar type (KT), fluorite type (FT), quartz-mica type (QT), iron-oxide type (MT), and amphibole type (HT). The allanite veins (AT) and zircon rich rocks (ZT) contain the highest total REE contents. Differences in REE abundance can be interpreted in terms of varying portions of magmatic hydrothermal fluid. Petrographical and chemical data are presented for allanites which were collected from different types. The allanites show wide variations in optical properties, due in part to differences in their chemical composition (depending on the types) and to the degree of crystallinity of the individual specimens. Allanite metamicts in biotite are generally surrounded by well developed pleochroic haloes. Usually, allanite is accompanied by zircon and other REE-bearing minerals. CaO and total REE contents $({\sum}RE_2O_3)$ range from 9.29 to 18.79% and 11.66 to 26.31%, respectively. Also, SiO, (28.87~32.61%), $Al_2O_3$ (8.30~16.88%), and $Fc_2O_3$ (16.74~24.38%) contents show varying contents from type to type. The ${\sum}RE_2O_3$ of allanite has positive relationships with $Fe_2O_3$ and negative relaton with CaO, $SiO_2$, and $Al_2O_3$ Backscattered electron microscope images (BEl) of allanite shows that the its mineral composition and texture is very complex. The allanite-bearing hosts show distinct light REE enrichment with strong negative Eu anomaly except for HI. The HT has an almost flat REE distribution pattern with a small negative Eu anomaly. The chemical variation of the allanites with occurrences and mineral association can be related to condition of temperature and oxidation states in precipitation environment.

  • PDF

Environmental Geochemistry and Heavy Matel Contamination of Ground and Surface Water, Soil and Sediment at the Kongjujuil Mine Creek, Korea (공주제일광산 수계에 분포하는 지하수, 지표수, 토양 및 퇴적물의 환경지구화학적 특성과 중금속 오염)

  • 이찬희
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.611-631
    • /
    • 1999
  • Enviromental geochemisty and heary metal contamination at the Kongjueil mine creek were underaken on the basis of physicohemical properties and mineralogy for various kinds of water (surface, mine and ground water),soil, precipitate and sediment collected of April and December in 1998. Hydrgeochemical composition of the water samples are characterized by relatively significant enricant of Ca+Na, alkiali ions $NO_3$ and Cl inground and surfore water, wheras the mine waters are relatively eneripheral water of the mining creek have the characteristics of the (Ca+Mg)-$(HCO_3+SO_4)$type. The pH of the mine water is high acidity (3.24)and high EC (613$\mu$S/cm)compared with those of surface and ground water. The range of $\delta$D and $\delta^{18}O$ values (relative to SMOW) in the waters are shpwn in -50.2 to -61.6% and -7.0 to -8.6$\textperthousand$(d value=5.8 to 8.7). Using computer program, saturation index of albite, calcite, dolomite in mine water are nearly saturated. The gibbiste, kaolinite and smectite are superaturated in the surface and ground water, respectively. Calculated water-mineral reaction and stabilities suggest that weathing of silicate minerals may be stable kaolinite owing to the continuous water-rock reaction. Geochemical modeling showed that mostly toxic heavy metals may exist larfely in the from of metal-sulfate $(MSO_4\;^2)$and free metal $(M^{2+})$ in nmine water. These metals in the ground and surface water could be formed of $CO_3$ and OH complex ions. The average enrichment indices of water samples are 2.72 of the groundwater, 2.26 of the surface water and 14.15 of the acid mine water, normalizing by surface water composition at the non-mining creek, repectively. Characteristics of some major, minor and rate earth elements (Al/Na, K/Na, V/Ni, Cr/V, Ni/Co, La/Ce, Th/Yb, $La_N/Yb_N$, Co/Th, La/Sc and Sc/Th) in soil and sediment are revealed a narrow range and homogeneous compositions may be explained by acidic to intermediate igneous rocks. And these suggested that sediment source of host granitic gneiss colud be due to rocks of high grade metamorphism originated by sedimentary rocks. Maximum concentrations of environmentally toxic elements in sediment and soil are Fe=53.80 wt.% As=660, Cd=4, Cr=175, Cu=158, Mn=1010, Pb=2933, Sb=4 and Zn=3740 ppm, and extremely high concentrations are found are found in the subsurface soil near the ore dump and precipitates. Normalizing by composition of host granitic gneiss, the average enerichment indices are 3.72 of the sediments, 3.48 of the soils, 10.40 of the precipitates of acid mine drainage and 6.25 of the soils near the main adit. The level of enerichment was very severe in mining drainage sediments, while it was not so great in the soils. mineral composition of soil and sediment near the mining area were partly variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. reddish variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. Reddish brown precipitation mineral in the acid mine drainage identifies by schwertmanite. From the separated mineralgy, soil and sediment are composed of some pyrite, arsenopyite, chalcopyrite, sphalerite, galena, malachite, goethite and various kinds of hydroxied minerals.

  • PDF