• Title/Summary/Keyword: %24K%5E%2B-channel%24

Search Result 8, Processing Time 0.03 seconds

A Fault Tolerant ATM Switch using a Fully Adaptive Self-routing Algorithm - The Cyclic Banyan Network (실내 무선 통신로에서 파일럿 심볼을 삽입한 Concatenated FEC 부호에 의한 WATM의 성능 개선)

  • 박기식;강영흥;김종원;정해원;양해권;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1276-1284
    • /
    • 1999
  • We have evaluated the BER's and CLP's of Wireless ATM (WATM) cells employing the concatenated FEC code with pilot symbols for fading compensation through the simulation in indoor wireless channel modeled as a Rayleigh and a Rician fading channel, respectively. The results of the performance evaluation are compared with those obtained by employing the convolutional code in the same condition. In Rayleigh fading channel, considering the maximum tolerance BER ( $10^-3$) as a criterion of the voice service, it is blown that the performance improvement of about 4 dB is obtained in terms of $E_b/N_o$ by employing the concatenated FEC code with pilot symbols rather than the convolutional code with pilot symbols.When the values of K parameter which means the ratio of the direct signal to scattered signal power in Rician fading channel are 6 and 10, it is shown that the performance improvement of about 4 dB and 2 dB is obtained, respectively, in terms of $E_b/N_o$ by employing the concatenated FEC code with pilot symbols considering the maximum tolerance BER of the voice service. Also in Rician fading channel of K=6 and K= 10, considering CLP = $10^-3$ as a criterion, it is observed that the performance improvement of about 3.5 dB and1.5 dB is obtained, respectively, in terms of $E_b/N_o$ by employing the concatenated FEC code with pilot symbols.

  • PDF

Differential Functional Expression of Clotrimazole-sensitive $Ca^{2+}$-activated $K^+$ Current in Bal-17 and WEHI-231 Murine B Lymphocytes

  • Zheng, Haifeng;Ko, Jae-Hong;Nam, Joo-Hyun;Earm, Yung-E;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2006
  • The intermediate conductance $Ca^{2+}-activated$ $K^+$ channels (SK4, IKCa1) are present in lymphocytes, and their membrane expression is upregulated by various immunological stimuli. In this study, the activity of SK4 was compared between Bal-17 and WEHI-231 cell lines which represent mature and immature stages of murine B lymphocytes, respectively. The whole-cell patch clamp with high-$Ca^{2+}$ ($0.8{\mu}M$) KCl pipette solution revealed a voltage-independent $K^+$ current that was blocked by clotrimazole (1 mM), an SK4 blocker. The expression of mRNAs for SK4 was confirmed in both Bal-17 and WEHI-231 cells. The density of clotrimazole-sensitive SK4 current was significantly larger in Bal-17 than WEHI-231 cells ($-11.4{\pm}3.1$ Vs. $-5.7{\pm}1.15$ pA/pF). Also, the chronic stimulation of B cell receptors (BCR) by BCR-ligation (anti-IgM Ab, $3{\mu}g$/ml, 8∼12 h) significantly upregulated the amplitude of clotrimazolesensitive current from $-11.4{\pm}3.1$ to $-53.1{\pm}8.6$ pA/pF in Bal-17 cells. In WEHI-231 cells, the effect of BCR-ligation was significantly small ($-5.7{\pm}1.15$ to $-9.0{\pm}1.00$ pA/pF). The differential expression and regulation by BCR-ligation might reflect functional changes in the maturation of B lymphocytes.

16-QAM-Based Highly Spectral-Efficient E-band Communication System with Bit Rate up to 10 Gbps

  • Kang, Min-Soo;Kim, Bong-Su;Kim, Kwang Seon;Byun, Woo-Jin;Park, Hyung Chul
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.649-654
    • /
    • 2012
  • This paper presents a novel 16-quadrature-amplitude-modulation (QAM) E-band communication system. The system can deliver 10 Gbps through eight channels with a bandwidth of 5 GHz (71-76 GHz/81-86 GHz). Each channel occupies 390 MHz and delivers 1.25 Gbps using a 16-QAM. Thus, this system can achieve a bandwidth efficiency of 3.2 bit/s/Hz. To implement the system, a driver amplifier and an RF up-/down-conversion mixer are implemented using a $0.1{\mu}m$ gallium arsenide pseudomorphic high-electron-mobility transistor (GaAs pHEMT) process. A single-IF architecture is chosen for the RF receiver. In the digital modem, 24 square root raised cosine filters and four (255, 239) Reed-Solomon forward error correction codecs are used in parallel. The modem can compensate for a carrier-frequency offset of up to 50 ppm and a symbol rate offset of up to 1 ppm. Experiment results show that the system can achieve a bit error rate of $10^{-5}$ at a signal-to-noise ratio of about 21.5 dB.

Characterization of Somatolactin cDNA from Rock Bream (Oplegnathus fasciatus) (돌돔(Oplegnathus fasciatus) somatolactin cDNA의 분석)

  • 강현실;여인규;이제희
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.805-813
    • /
    • 2003
  • cDNA encoding somatolactin (SL) was obtained by RT-PCR from pituitary glands of rock bream (Oplegnathus fasciatus). The full length cDNA of rock bream somatolactin (rbSL) is 1636 bp long. It contains a 696 bp open reading frame encoding a signal peptide of 24 amino acids (an) and a mature protein of 207 aa. rbSL has seven cysteine residues$(Cys^{5},\; Cys^{15},\; Cys^{42},\; Cys^{65},\; Cys^{181},\; Cys^{198}\; $and $Cys^{206})$ and two potential N-glycosylation sites at positions $Asn^{121}$and $Asn^{153}$. The rbSL shares 61.1∼92.6% amino acid sequence similarities and 63∼92.6% nucleotide sequence identities with other teleost SLs, except for goldfish and channel catfish SL. Amino acid sequence alignment revealed that rbSL has four conserved domains $(A_{SL},\; B_{SL},\; C_{SL}and\; D_{SL})$ common to all SLs. Out of these domains, $(A_{SL},\; B_{SL},\; C_{SL}and\; D_{SL})$, are also conserved in all teleost growth hormones and prolactins. The cDNA of rbSL has been cloned into pET expression vector in order to produce recombinant rbSL in E. coli BL2l(DE3) cells. The recombinant protein showed a molecular weight of 27 kDa in SDS-PAGE.

Bit-Rate Control Using Histogram Based Rate-Distortion Characteristics (히스토그램 기반의 비트율-왜곡 특성을 이용한 비트율 제어)

  • 홍성훈;유상조;박수열;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1742-1754
    • /
    • 1999
  • In this paper, we propose a rate control scheme, using histogram based rate-distortion (R-D) estimation, which produces a consistent picture quality between consecutive frames. The histogram based R-D estimation used in our rate control scheme offers a closed-form mathematical model that enable us to predict the bits and the distortion generated from an encoded frame at a given quantization parameter (QP) and vice versa. The most attractive feature of the R-D estimation is low complexity of computing the R-D data because its major operation is just to obtain a histogram or weighted histogram of DCT coefficients from an input picture. Furthermore, it is accurate enough to be applied to the practical video coding. Therefore, the proposed rate control scheme using this R-D estimation model is appropriate for the applications requiring low delay and low complexity, and controls the output bit-rate ad quality accurately. Our rate control scheme ensures that the video buffer do not underflow and overflow by satisfying the buffer constraint and, additionally, prevents quality difference between consecutive frames from exceeding certain level by adopting the distortion constraint. In addition, a consistent considering the maximum tolerance BER of the voice service. Also in Rician fading channel of K=6 and K=10, considering CLP=$10^{-3}$ as a criterion, it is observed that the performance improment of about 3.5 dB and 1.5 dB is obtained, respectively, in terms of $E_b$/$N_o$ by employing the concatenated FEC code with pilot symbols.

  • PDF

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics (유역특성에 의한 합성단위도의 유도에 관한 연구)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF