• Title/Summary/Keyword: %24AT_1%24 receptor

Search Result 232, Processing Time 0.033 seconds

Effect of Ethanol on Mouse Brain Cell

  • Jang, Hyung Seok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • Ethanol has long been implicated in triggering apoptotic neurodegeneration. Alcohol also may indirectly harm the fetus by imparing the mother's physiology. We examined the effects of ethanol on immature brain of mice. Three-weeks-old female ICR strain mice daily intraperitoneally injected with ethanol at the concentration of 4 and 20% in saline for 0, 6, and 24 hours and 1 and 4 weeks. The mice were weighted and sacrificed, and the brains were ectomized for the present histological, immunohistochemical and TUNEL assays. Based on the histologic hematoxylin and eosin stain, immunohistochemical expression of glutamate receptor protein and neuronal cell adhesion molecule (NCAM) were evaluated. The cerebral cortex of the ethanol-treated group showed few typical symptoms of apoptosis such as chromosome condensation and disintegration of the cell bodies. TUNEL staining revealed DNA fragmentation in the 6 and 24 hours. This results demonstrated that acute ethanol administration causes neuronal cell death. I found that either glutamate receptor inhibition or activation could induce cerebellar degeneration as ethanol effect. Neuronal death also can be induced by excess activity of certain neurotransmitter, including glutamate. Neurons must establish cell-to-cell contact during growth and development in order to survive, migrate to their final destination, and develop appropriate connections with neighboring cell. Purkinje cell in cerebellar are especially vulnerable to the cell death and degeneration. After ethanol treatment in cerebellar, NCAM had decreased by 4 weeks. This result suggest that apoptosis seems to be involved in the slow elimination of neuron and cerebellar degeneration.

The effect of five osteotropic factors on osteoprotegerin mRNA expression in gingival fibroblasts

  • Ko, Young-Kyung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.395-404
    • /
    • 2008
  • Purpose: Osteoprotegerin (OPG) is a secreted glycoprotein and a member of the tumor necrosis factor (TNF) receptor family that inhibits bone resorption by suppressing osteoclastogenesis. Gingival fibroblasts (GF) play a role in periodontal disease progression, and the purpose of this experiment was to evaluate influence of osteotropic factors on the expression of osteoprotegerin mRNA in these cells. Materials and Methods: In this experiment, the influence of osteoclastogenic factors, interleukin-1 beta (IL-$1{\beta}$), TNF-$\alpha$, prostanglandin E2 ($PEG_2$). parathyroid hormone (PTH) and 1$\alpha$, 25-dihydroxyvitamin $D_3$ on the expression of osteoprotegerin mRNA in GF was studied by Northern blot hybridization. Results: As expected, $PEG_2$ tended to inhibit OPG levels and this was most prominent at 24 hours of culture with $10^{-7}M$ of $PEG_2$. TNF-$\alpha$ at 10ng/ml and also at 25ng/ml decreased OPG levels to almost 30% of the control at 24 hours. This contrasts with reports of increased OPG levels from osteoblast/stromal cells and gingival fibroblasts stimulated by TNF-$\alpha$. Decrease of OPG levels with $PEG_2$ and TNF-$\alpha$ suggests a pathway whereby these mediators exert their resorptive effects. However, OPG levels were increased almost 3-fold at 24 hours with IL-1$\beta$(1 to 15ng/ml) and increased 1.4 fold with 24-hour treatment of $10^{-7}M$ PTH. Conclusion: Increase of OPG levels suggests that these 'osteoclastogenic' factors act in more complex ways and may act to inhibit bone resorption in inflammatory periodontitis. This result supports the role of OPG as a negative feedback mechanism in osteoclastic activity.

Antihypertensive activity of KR-31081, an orally active nonpeptide AT1 receptor antagonist (안지오텐신 수용체 리간드 KR-31081의 생체 내 활성에 관한 연구)

  • Lee, Sung-Hou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3473-3479
    • /
    • 2009
  • The pharmacological profile of KR-31081, a newly synthesized AT1 receptor antagonist, was evaluated in pithed rats, conscious renal hypertensive rats (RHRs) and conscious furosemide-treated beagle dogs. In pithed rats, KR-31081 (i.v.) induced a non-parallel right shift in the dose-pressor response curve to angiotensin II (ID50: 0.05 mg/kg) with a dose-dependent reduction in the maximum responses; this antagonistic effect was about 40 times more potent than losartan (ID50: 1.74 mg/kg) which showed competitive antagonism. KR-31081 did not alter the responses induced by other agonists such as norepinephrine and vasopressin. In RHRs, orally given KR-31081 produced a dose-dependent and long-lasting (>24 h) antihypertensive effect with a higher potency to losartan (ED20: 0.30 and 3.36 mg/kg, respectively). In furosemide-treated dogs, orally given KR-31081 produced a dose-dependent and long-lasting (>8h) antihypertensive effect with a rapid onset of action (time to Emax: 1-1.5 h) and 20-fold greater potency than losartan (ED20: 0.41 and 8.13 mg/kg, respectively). These results suggest that KR-31081 is a potent, orally active AT1 receptor antagonist useful for the research and diagnostic tools as an added exploratory potential.

Expression patterns of innate immunity-related genes in response to polyinosinic:polycytidylic acid (poly[I:C]) stimulation in DF-1 chicken fibroblast cells

  • Jang, Hyun-Jun;Song, Ki-Duk
    • Journal of Animal Science and Technology
    • /
    • v.62 no.3
    • /
    • pp.385-395
    • /
    • 2020
  • Polyinosinic:polycytidylic acid (poly[I:C]) can stimulate Toll-like receptor 3 (TLR3) signaling pathways. In this study, DF-1 cells were treated with poly(I:C) at various concentrations and time points to examine the comparative expression patterns of innate immune response genes. The viability of DF-1 cells decreased from 77.41% to 38.68% when cells were treated different dose of poly(I:C) from 0.1 ㎍/mL to 100 ㎍/mL for 24 h respectively. The expressions of TLR3, TLR4, TLR7, TLR15, TLR21, IL1B, and IL10 were increased in dose- and time-dependent manners by poly(I:C) treatment. On the contrary, the expression patterns of interferon regulatory factors 7 (IRF7), Jun proto-oncogene, AP-1 transcription factor subunit (JUN), Nuclear Factor Kappa B Subunit 1 (NF-κB1), and IL8L2 were varied; IRF7 and IL8L2 were increasingly expressed whereas the expressions of JUN and NF-κB1 were decreased in a dose-dependent manner after they were early induced. In time-dependent analysis, IRF7 expression was significantly upregulated from 3 h to 24 h, whereas JUN and NF-κB1 expressions settled down from 6 h to 24 h after poly(I:C) treatment although they were induced at early time from 1 h to 3 h. Poly(I:C) treatment rapidly increased the expression of IL8L2 from 3 h to 6 h with a plateau at 6 h and then the expression of IL8L2 was dramatically decreased until 24 h after poly(I:C) treatment although the expression level was still higher than the non-treated control. These results may provide the basis for understanding host response to viral infection and its mimicry system in chickens.

Effects of Preincisional Administration of Magnesium Sulfate on Postoperative Pain and Recovery of Pulmonary Function in Patients Undergoing Gastrectomy (위절제술 환자에서 술전 마그네슘 정주가 술후 통증 및 폐기능 회복에 미치는 영향)

  • Ko, Seong-Hoon;Jang, Young-Ik;Lee, Jun-Rye;Han, Young-Jin;Choe, Huhn
    • The Korean Journal of Pain
    • /
    • v.13 no.1
    • /
    • pp.31-37
    • /
    • 2000
  • Background: Recent studies suggested that a preoperative block of N-methyl-D-aspartate (NMDA) receptors with NMDA antagonists may reduce postoperative pain. In this double-blind study, magnesium sulfate, a natural NMDA receptor antagonist, was administered preoperatively to investigate the effects of magnesium sulfate on postoperative pain and pulmonary function. Methods: Seventy patients who were to undergo gastrectomy under general anesthesia were randomly assigned to one of three groups. Groups 2 and 3 received intravenous magnesium, preoperatively (Group 2: 50 mg/kg bolus, 7.5 mg/kg/hr for 20 hr, Group 3: 50 mg/kg bolus, 15 mg/kg/hr for 20 hr). Group 1 received normal saline as the control group. Visual analog scale (VAS) for postoperative pain and mood, cumulative analgesic consumption, recovery of pulmonary function and side effects were evaluated at 6, 24, 48 and 72 hours after the operation. Results: In Groups 2 and 3, plasma concentration of magnesium were significantly higher than in Group 1 at 6 and 20 hours after infusion (P<0.05). There were no significant differences in the analgesic consumption, and recovery of pulmonary function and the incidence of side effects at 6, 24, 48 and 72 hours after the operation among the three groups. In Group 3, pain scores at rest measured 24 and 48 hours after operation were lower than the control group, and pain scores when deep breathing were significantly lower than the control group at postoperative 6, 24, 48, and 72 hours. Conclusions: We conclude that intravenous infusion of greater amount of magnesium has little effectiveness in reducing postoperative pain. However, further studies are needed to characterize the clinical significance of these effects on postoperative pain.

  • PDF

Identification of Gene-based Potential Biomarkers for Cephalexin-induced Nephrotoxicity in Mice

  • Park, Han-Jin;Oh, Jung-Hwa;Hwang, Ji-Yoon;Lim, Jung-Sun;Jeong, Sun-Young;Kim, Yong-Bum;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • Cephalexin, one of most widely prescribed cephalosporin, has been reported to cause acute renal failure as a side effect in human and experimental animals. Although numerous animal studies have been reported for the cephalosporin nephrotoxicity, the molecular and cellular nephrotoxic mechanisms of cephalexin are still unknown. This investigation evaluated the time-dependent gene expression profile of kidney in mouse during cephalexin induced nephrotoxicity. C57BL/6 female mice were administered either saline or 1,000 mg/kg cephalexin intraperitoneally. Mice were sacrificed at 3, 6, and 24 hr after administration. Blood biochemical and histopathological results indicated cephalexin induced nephrotoxicity. Microarray experiment carried out using Affymetrix $GeneChip^{(R)}$. There were 198 informative genes that were significantly expressed >5-fold versus control at 3, 6, and 24 hr (p<0.01), of which 156 and 42 were up-and down-regulated, respectively. Major classes of up-regulated genes at 3, 6 hr included those involved in MAPK/Jak-STAT signaling pathway and immune response such as cytokine-cytokine receptor interaction and complement and coagulation cascades. At 24 hr, up-regulated genes were mainly involved in regeneration/repair and immune response; down-regulated genes were generally associated with transporters and intermediary metabolism. Among the up-regulated genes at 24 hr, several potential biomarkers on nephrotoxicity such as Kim-1, Fga, Timp1, and Slc34a2 were clustered in a same category. In addition, Tnfrsf12a and Lcn2 which were consistently up-regulated (>5 fold) were also included as potential biomarkers. These results may provide clues for elucidating the mechanism of cephalexin induced nephrotoxicity and evaluating potential biomarkers to assess nephrotoxicity.

Natural killer T cell and pathophysiology of asthma

  • Jang, Gwang Cheon
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.2
    • /
    • pp.136-145
    • /
    • 2010
  • Natural killer T (NKT) cell is a special type of T lymphocytes that has both receptor of natural killer (NK) cell (NK1.1, CD161c) and T cell (TCR) and express a conserved or invariant T cell receptor called $V{\alpha}14J{\alpha}18$ in mice or Va24 in humans. Invariant NKT (iNKT) cell recognizes lipid antigen presented by CD1d molecules. Marine-sponge-derived glycolipid, ${\alpha}-galactosylceremide$ (${\alpha}-GalCer$), binds CD1d at the cell surface of antigen-presenting cells and is presented to iNKT cells. Within hours, iNKT cells become activated and start to secrete Interleukin-4 and $interferon-{\gamma}$. NKT cell prevents autoimmune diseases, such as type 1 diabetes, experimental allergic encephalomyelitis, systemic lupus erythematous, inflammatory colitis, and Graves' thyroiditis, by activation with ${\alpha}-GalCer$. In addition, NKT cell is associated with infectious diseases by mycobacteria, leshmania, and virus. Moreover NKT cell is associated with asthma, especially CD4+ iNKT cells. In this review, I will discuss the characteristics of NKT cell and the association with inflammatory diseases, especially asthma.

Assessment of Ki-67 for Predicting Effective Prognosis in Breast Cancer Subtypes

  • Park, Sangjung;Park, Sunyoung;Kim, Jungho;Ahn, Sungwoo;Park, Kwang Hwa;Lee, Hyeyoung
    • Biomedical Science Letters
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • Ki-67 has been widely performed and become an important biomarker in worldwide clinics, but the standard cut off value of Ki-67 index in breast cancer is still controversy. The objective study was to understand the Ki-67 in breast cancer subtypes and to investigate relative risk of breast cancer subtypes according to Ki-67 cut off value in Korean breast cancer. Immunohistochemical staining (IHC) for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67 index was examined from 123 breast cancer patients. Ki-67 index was significantly overexpressed in PR, ER, and HER2 hormone negative groups. Ki-67 index in Triple negative and HER2 subtypes was shown significantly higher than that in Luminal A and Luminal B subtype. Then, we compared the relative risk of each subtype according to 14% and 20% Ki-67 cut off value, which were applied in most clinics. Especially, 20% Ki-67 cut off value in HER2 and Triple negative subtypes was shown 8.41 fold and 2.83 fold higher relative risk than this in Luminal A subtype. Moreover, Ki-67 index in HER2 2+ or 3+ status showed significantly overexpressed than this in HER2 1+ status. At the 20% Ki-67 cut off value, HER2 1+ or 2+ status and 3+ status showed significant difference. Therefore, the 20% Ki-67 cut off value will be useful as a precise prognostic management and helpful for interpreting diverse outcomes of other subtypes in breast cancer patients.

Analysis of Androgen Receptor Gene by Capillary Gel Eelectrophoresis (모세관 젤 전기영동을 이용한 안드로젠 수용체 유전자 분석)

  • Kim, Yong-Seong;Baek, Seung-Gwon;Gang, Chung-Mu;Gang, Dae-Cheon;Lee, Su-Man;Choe, Byeong-Ok;Jeong, Gi-Hwa;Choe, Gyu-Seong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • gel electrophoresis (CGE) with poly(ethylene oxide) has been applied to the measurement of CAG repeat number in Androgen receptor (AR) gene related to male infertility. Non-linear regression analysis was performed using the standard X174 RF/Hae III, 100bp step ladder DNA in order to investigate the exact number of CAG repeat. For 79 Korean infertile males and 89 controls, CAG repeats at exon 1 in AR gene was compared and analyzed by CGE. It turned out that CAG repeat numbers were 24.972.6 range, 17-29) for the infertile male, and 23.992.4 range, 18-29) for the control, respectively. P value (0.018) was less then 0.05, meaning that the result was statistically meaningful.

Effects of HIF-1α/VP16 Hybrid Transcription Factor on Estrogen Receptor in MCF-7 Human Breast Cancer Cells

  • Cho, Jung-Yoon;Park, Mi-Kyung;Lee, Young-Joo
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.227-231
    • /
    • 2005
  • The estrogen receptor (ER) is activated and degraded by estrogen. We have examined ER downregulation and activation under hypoxia mimetic conditions. Cobalt chloride induced ER downregulation at 24 h of treatment. This degradation involved hypoxia-inducible factor-1$\alpha$ (HIF-1$\alpha$) as examined by using a constitutively active form of HIF-1$\alpha$, HIF-1$\alpha$/VP16, constructed by replacing the transactivation domain of HIF-1$\alpha$ with that of VP16. Western blot analysis revealed that E2-induced ER downregulation was observed within ${\~}6h$, whereas HIF-1$\alpha$/VP16-induced ER degradation was observed within 12${\~}$20h. HIF-1$\alpha$/VP16 activated the transcription of estrogen-responsive reporter gene in the absence of estrogen. These results suggest that ER downregulation and activation under hypoxia maybe mediated in part by a HIP-1$\alpha$ expression.