• Title/Summary/Keyword: % RSD

Search Result 528, Processing Time 0.031 seconds

Development and Validation of an Official Analytical Method for Determination of Ipfencarbazone in Agricultural Products using GC-ECD (GC-ECD를 이용한 농산물 중 Ipfencarbazone의 신규분석법 개발 및 검증)

  • Jang, Jin;Kim, Heejung;Lee, Eun-Hyang;Ko, Ah-Young;Ju, Yunji;Kim, Sooyeon;Chang, Moon-Ik;Rhee, Gyu-Seek
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.210-217
    • /
    • 2015
  • Ipfencarbazone is a herbicide of the tetrazolinone class, and is believed to be an inhibitor of very long chain fatty acids (VLCFAs), which control cell division in weeds. The objective of this study was to develop and validate an official analytical method for ipfencarbazone determination in agricultural products. The ipfencarbazone residues in agricultural products were extracted with acetone, partitioned with n-hexane, and then purified through silica SPE cartridge. Finally, the analyte was quantified by gas chromatograph-electron capture detector (GC-ECD) and confirmed with gas chromatograph/mass spectrometer(GC/MS). The linear range of ipfencarbazone was 0.01 to 1.0 mg/L with the coefficient of determination ($r^2$) of 0.9999. The limit of detection (LOD) and quantification (LOQ) was 0.003 and 0.01 mg/kg, respectively. In addition, average recoveries of ipfencarbazone ranged from 80.6% to 112.3% at the different concentration levels LOQ, 10LOQ and 50LOQ, while the relative standard deviation was 2.2-8.6%. All values were consistent with the criteria ranges requested in the CODEX guidelines. Furthermore, and inter-laboratory study was conducted to validate the method. This proposed method for determination of ipfencarbazone residues in agricultural products can be used as an official analytical method.

Proficiency Testing for the HPLC Analysis of Azoxystrobin, Imidacloprid and Methabenzthiazuron Residues in Soil (HPLC를 이용한 아족시스트로빈과 이미다클로프리드, 메타벤즈티아주론의 토양 잔류분석 숙련도시험)

  • Kim, Chan-Sub;Son, Kyeong-Ae;Gil, Geun-Hwan;Im, Geon-Jae
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.218-229
    • /
    • 2015
  • The proficiency testing for the residue laboratories of pesticide registration was conducted in order to improve the reliability and the ability for pesticide residue analysis. On November 2012 the testing was carried out using the soil collected and kept as the moistened state for five years, which was expected to very low residue levels of pesticides. The soil was fortified with azoxystrobin, imidacloprid and methabenzthiazuron in a manner similar to prepare soil samples for indoor soil degradation test, and then sub-samples were prepared for the distribution to participants. Some of them were randomly selected for confirm of homogeneity and to ensure the stability of samples at room temperature. Samples were consisted of two soils treated as different levels, one of which was used to the assessment and another used to confirm. In addition, provided three standard solutions, respectively concentration of 10 mg/L, and untreated soil. Forty eight institutions submitted results. The medians of results were used as the assigned values for pesticide residues. Fitness for purpose standard deviation of proficiency test was calculated by applying 20% RSD as the coefficient of variation allowed in the soil residue test. Z-score was applied for evaluation of individual pesticides, and the average of the absolute value of the Z-score for the overall assessment of pesticides. Laboratories evaluated the absolute value of the Z-score less than 2 to fit the case of azoxystrobin were 48, imidacloprid and methabenzthiazuron 46.

Simultaneous Determination of Non-steroidal Anti-inflammatory Drugs and Corticosteroids Added to Foods as Adulterants using LC-ESI-tandem Mass Spectrometry (LC/ESI-MS/MS를 이용한 식품 중 불법적으로 첨가된 비스테로이드성 소염진통제 및 스테로이드 의약품 동시분석)

  • Lee, Yongcheol;Park, Ju-Sung;Kim, Sung-Dan;Yang, Hye-Ran;Kim, Eun-Hee;Yi, Yun-Jung;Cho, Sung-Ja;Jo, Han-Bin;Kim, Jung-Hun;Chae, Young-Zoo
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.3
    • /
    • pp.247-251
    • /
    • 2013
  • The objective of present study was to develop a simultaneous determination method of 5 medical compounds, including beclomethasone, dexamethasone, prednisolone, ketoprofen, phenylbutazone in foods, using LC-MS/MS. To optimize MS analytical condition of 5 compounds, each parameter was established by MRM mode. The chromatographic separation was achieved on a C18 column successfully, with a mobile phase made up of A (0.1% formic acid) and B (0.1% formic acid in acetonitrile), at a flow rate of 0.3 mL/min for 17 min with a gradient elution. LOD and LOQ of 5 compounds were in the range of 0.40~4.60 ng/mL and 0.81~11.46 ng/mL, respectively. As a result of analyzing the three concentrations of the standard mixture added to blank samples, the results showed that the mean recovery rate of 5 compounds was in the range of 81.52~103.83%, and RSD (%) of Intra- and Inter-day assay were 0.52-10.45. Since relatively fine selectivity, accuracy and reproducibility were shown in this qualified experimental method, it could be utilized efficiently to investigating those 5 compounds to see if it is added to food products illegally.

Characteristics of Total Carbon and Total Organic Carbon Using Elemental Analyzer in Hyung-Do Intertidal Zone Sediments (원소분석기를 이용한 형도 퇴적물의 총탄소 및 총유기탄소 특성)

  • Lee, Jun-Ho;Park, Kap-Song;Woo, Han-Jun
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.673-684
    • /
    • 2012
  • Quantitative understanding of total carbon, total inorganic carbon and total organic carbon contained in ocean sediments is a basic data for interpretation of oceanic sediment environments. Elemental analyzer(EA) is frequently used for the analysis of carbon contents in inland soils and ocean sediments. Carbon and nitrogen contents of the soil reference material analyzed by an EA were 2.30% and 0.21% with standard deviations of 0.02 and 0.01, respectively. Relative standard deviations were 0.01 and 0.06, respectively, representing a high precision. Regression analysis of TOC and TC analysis results for the samples with TOC of less than 2.0% for the site in Hyung-Do showed a linear relationship with a slope of 0.9743($R^2$=0.9989, n=38), and the results of a relationship regression analysis between total organic carbon contents less than 0.5% and average grain size except for two samples showed a linear relationship with a slope of 0.0444($R^2$=0.6937 n=36). TOC contents of surface sediments were in the ranges of 0.10~1.67%(Average $0.26{\pm}0.37%$) with TOC values of 1.67% at S02 sampling site, 1.13% at S07 sampling site, and less than 1.00% at remaining sites. In the case of PC 01 core sediments, TOC showed the highest value of 0.20% near 70 cm. In the case of PC 02 core sediments, the highest value of 0.24% was indicated near 60 cm. The analysis method of organic carbon obtained from Hyung-Do Intertidal zone sediment sample results may be considered applicable to an organic carbon analysis for ocean sediments and useful for organic carbon analysis experiments of ocean sediments with a reduction in time required for the analysis and a high precision coupled with a high accuracy.

Comparative Study of the Efficiency of GC with Large Volume Injector and SPE Clean-up Process Applied in QuEChERS Method (GC-대용량 주입장치와 SPE를 적용한 QuEChERS 잔류농약 분석법의 효율성 비교)

  • Park, Young Jun;Hong, Su Myeong;Kim, Taek Kyum;Kwon, Hye Young;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.370-393
    • /
    • 2015
  • This study was conducted to compare STQ method, multi-residue method in Korean food code and QuEChERS method for validated selected and accuracy, reproducibility and efficiency. A total of 45 selected and targeted pesticides were the analyzed by GC and 5 of them were crops (apple, potato, green pepper, rice, soy bean). $R^2$ values were calculated in the standard calibration curve was over 0.990. Recovery tests were performed by three replications in two levels and the relative standard deviation of the repeated experiments was less than 30%. The average percentage of recoveries in the multi-residue method in Korean food code was 89.13%, QuEChERS method was 92.45% and STQ method was 85.28%. In addition, matrix effects in multi-residue method in Korean food code was 24.61%, QuEChERS method was 23.98% and STQ method showed 11.24%. The STQ method is easy and showed high clean-up effect in extracting the sample solution than the QuEChERS method and clean-up with C18, PLS, PSA cartridge columns. A large volume of the sample was injected in order to compensable for the problem, that occurred due to high detection limit in the analyser. When the STQ method was applied using a large volume injector, the standard calibration curve showed a higher linearity $R^2=0.990$, and method detection limit was 0.01 mg/kg. It showed an average recovery of 91.84% and the relative standard deviations of three replications repeated in two level process was less than 30% and had an average matrix effect of 17.90%.

Monitoring Heavy Metals in Meat and Meat Products (식육 및 그 가공품의 중금속 모니터링)

  • Hwang, Tae-Ik;Ahn, Tae-Hyun;Kim, Eun-Jung;Lee, Jung-Ah;Kang, Myoung-Hee;Jang, Young-Mi;Kim, Mee-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.525-531
    • /
    • 2011
  • This study was conducted to examine the contents of lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg) in meat and meat products in Korea. The contents of Pb, Cd, As, and Hg in 466 samples of beef, pork, chicken, duck, ham, and sausage were measured using inductively coupled plasma mass spectrometry or a mercury analyzer. Wet ashing and microwave method were compared, and the recovery and reproducibility of the microwave method were better than those of wet ashing for meat and meat products. The recovery of the microwave method was 98.1% for Pb, 104.6% for Cd, and 103.4% for As, respectively. The best result was obtained through digestion using an acid mixture ($HNO_3$/$H_2O_2$, 6:2). Hg content was measured using a mercury analyzer. As a result, the contents of Hg and Cd in samples were lower than those of Pb and As. The average contents of Pb were 0.009 mg/kg in beef, 0.010 mg/kg in pork, 0.006 mg/kg in chicken, 0.007 mg/kg in duck, 0.005 mg/kg in ham, and 0.009 mg/kg in sausage. The average Cd contents were 0.0004 mg/kg in beef, 0.0004 mg/kg in pork, 0.0005 mg/kg in chicken, 0.0012 mg/kg in duck, 0.0015 mg/kg in ham, and 0.0019 mg/kg in sausage. The average As contents were 0.016 mg/kg in beef, 0.004 mg/kg in pork, 0.021 mg/kg in chicken, 0.010 mg/kg in duck, 0.014 mg/kg in ham, and 0.018 mg/kg in sausage. The average Hg contents were 0.713 ${\mu}g/kg$ in beef, 0.902 ${\mu}g/kg$ in pork, 0.710 ${\mu}g/kg$ in chicken, 0.796 ${\mu}g/kg$ in duck, 1.141 ${\mu}g/kg$ in ham, and 1.052 ${\mu}g/kg$ in sausage. Based on the results of the National Health and Nutrition Survey 2005, the levels of dietary exposure to heavy metal contaminants in meat and meat products were compared with the provisional tolerable weekly intake(PTWI) established by the Joint FAO/WHO Expert Committee on Food Additives. The average dietary exposure of the general population from meat and meat products was 0.03-0.2% of PTWI for Pb, Cd, As, and Hg, which indicates a safe level for public health at present.

Determination of homogentisic acid in human plasma by GC-MS for diagnosis of alkaptonuria (GC-MS를 이용한 혈장 중 호모겐티식산의 분석;알캅톤뇨증의 진단)

  • Thapa, Maheshwor;Yu, Jundong;Lee, Wonjae;Islam, Fokhrul;Yoon, Hye-Ran
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.323-330
    • /
    • 2015
  • Alkaptonuria, a rare inherited metabolic disease, is characterized by a lack of homogentisate dioxygenase and accumulation of homogentisic acid (HGA), leading to homogentisic aciduria, arthritis, and ochronosis. In this study, a rapid analytical method, without an expensive and tedious solid phase extraction step, was developed to quantify HGA in plasma using GC-MS. HGA-spiked pooled plasma samples were subjected to liquid-liquid extraction (LLE) with ethyl acetate, followed by trimethylsilyl derivatization (TMS) and GC-MS quantification using selected ion monitoring. The formation of TMS derivative of the 1 carboxylic and 2 hydroxyl functional groups was performed by reacting BSTFA (with 10% TMCS) for 5 min at 80 ℃. For selected ion monitoring, quantification and confirmation ions were determined based on specific ions (m/z 384, m/z 341 and m/z 252) of the TMS derivative of HGA. Calibration curves of pooled normal plasma specimens showed a linear relationship in the range of 1-100 ng/µL. The precision and accuracy were within a relative standard deviation (RSD) of 1 to 15% and a bias of -5 to 25%. Recoveries were obtained in the range of 99-125% and 95-115% for intra-day and inter-day assay, respectively, at 2, 20 and 80 ng/µL. The limit of detection (LOD) and limit of quantification (LOQ) were 0.4 ng/µL and 4 ng/µL, respectively. No homogentisic acid was excreted from normal Korean plasma samples. Collectively, the results from the present study suggest that this method could be useful for routine diagnosis and therapeutic monitoring of alkaptonuria patients with excellent sensitivity and rapidity.

Determination of secondary aliphatic amines in surface and tap waters as benzenesulfonamide derivatives using GC-MS (Benzenesulfonamide 유도체로 GC-MS를 사용한 지표수 및 수돗물 중 2차 지방족 아민의 분석)

  • Park, Sunyoung;Jung, Sungjin;Kim, Yunjeong;Kim, Hekap
    • Analytical Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.96-105
    • /
    • 2018
  • This study aimed to improve the method for detecting eight secondary aliphatic amines (SAAs), so as to measure their concentrations in fresh water and tap water samples. NaOH (8 mL, 10 M) and benzenesulfonyl chloride (2 mL) were added to a water sample (200 mL), and the mixture was stirred at $80^{\circ}C$ for 30 min. An additional NaOH solution (10 mL) was added and the stirring was continued for another 30 min. The pH of the cooled mixture was adjusted to 5.5-6.0 by adding HCl (35 %), and the SAAs were extracted using dichloromethane (50 mL). This extraction was repeated once. The extract was then washed with $NaHCO_3$ (15 mL, 0.05 M) and dried over $Na_2SO_4$ (4 g). The extract was finally concentrated to 0.1 mL, of which $1{\mu}L$ was analyzed for SAAs by GC-MS. The linearity of the spike calibration curves was high ($r^2=0.9969-0.9996$). The detection limits of the method ranged from 0.01 to $0.20{\mu}g/L$, and its repeatability and reproducibility (expressed as relative standard deviation) were both less than 10 % (6.6-9.4 %). Its accuracy (measured in percentage error) ranged between 2.4 % and 6.1 %. The established method was applied to the analysis of five surface water and 82 tap water samples. Dimethylamine was the only SAA detected in all the water samples, and its average concentration was $0.79{\mu}g/L$ (range: $0.20-2.54{\mu}g/L$). Therefore, this study improved the analytical method for SAAs in surface water and tap water, and the regional and seasonal concentration distributions were obtained.

Proficiency Testing for the Gas-chromatographic Analysis of Procymidone, Chlorpyrifos and Metolachlor Residues in Soil (가스크로마토그래피를 이용한 토양 중 프로사이미돈과 클로르피리포스, 메톨라클로르의 잔류분석 숙련도시험)

  • Kim, Chan-Sub;Son, Kyeong-Ae;Gil, Geun-Hwan;Kim, Jin-Bae;Hong, Su-Myeong;Kwon, Hye-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.2
    • /
    • pp.94-106
    • /
    • 2013
  • The proficiency testing for the residue laboratories of pesticide registration was conducted in order to improve the reliability and the ability for pesticide residue analysis. On October 2011 the testing was carried out using the soil collected and kept as the moistened state for five years, which is expected to very low residue levels of pesticides. The soil was fortified with chlorpyrifos, metolachlor and procymidone in a manner similar to prepare soil sample for indoor soil degradation test, and then sub-samples were prepared for the distribution to participants. Some of them were randomly selected for confirm of homogeneity and to ensure the stability of samples at room temperature. Samples were consisted of two soil treated as different levels, one of which was used to the assesment and another used to confirm. In addition, provide three standard solutions, respectively concentration of 10 mg/L, and untreated soil. Forty seven institutions submitted results. The medians of results were used as the assigned values for pesticide residues. Fitness for purpose standard deviation of proficiency test was calculated by applying 20% RSD as the coefficient of variation allowed in the soil residue test. Z-score was applied for evaluation of individual pesticides, and the average of the absolute value of the Z-score for the overall assessment of pesticides. Laboratories evaluated the absolute value of the Z-score less than 2 to fit the case of chlorpyrifos and procymidone were 44, metolachlor 40.

Development of Simultaneous Analytical Method for Determination of Isoxaflutole and its Metabolite (Diketonitrile) residues in Agricultural Commodities Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Isoxaflutole과 대사산물(Diketonitrile)의 동시시험법 개발)

  • Ko, Ah-Young;Kim, Heejung;Do, Jung Ah;Jang, Jin;Lee, Eun-Hyang;Ju, Yunji;Kim, Ji Young;Chang, Moon-Ik;Rhee, Gyu-Seek
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.2
    • /
    • pp.93-103
    • /
    • 2016
  • A simultaneous analytical method was developed for the determination of isoxaflutole and metabolite (diketonitrile) in agricultural commodities. Samples were extracted with 0.1% acetic acid in water/acetonitrile (2/8, v/v) and partitioned with dichloromethane to remove the interference obtained from sample extracts, adjusting pH to 2 by 1 N hydrochloric acid. The analytes were quantified and confirmed via liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive-ion mode using multiple reaction monitoring (MRM). Matrix matched calibration curves were linear over the calibration ranges ($0.02-2.0{\mu}g/mL$) for all the analytes into blank extract with $r^2$ > 0.997. For validation purposes, recovery studies were carried out at three different concentration levels (LOQ, 10LOQ, and 50LOQ) performing five replicates at each level. The recoveries were ranged between 72.9 to 107.3%, with relative standard deviations (RSDs) less than 10% for all analytes. All values were consistent with the criteria ranges requested in the Codex guideline (CAC/GL40, 2003). Furthermore, inter-laboratory study was conducted to validate the method. The proposed analytical method was accurate, effective, and sensitive for isoxaflutole and diketonitrile determination in agricultural commodities.