• Title/Summary/Keyword: $luteolin-7-O-{\alpha}-_L-rhamnopyranosyl(1{\rightarrow}6)-{\beta}-_D-glucopyranoside$

Search Result 2, Processing Time 0.015 seconds

Pharmaco-constituents of Taraxacum hallaisanensis(I) -Phenolic Compounds from Aerial Part of Taraxacum hallaisanensis- (좀민들레의 약효 성분(I) -좀민들레 지상부의 Phenol 성분-)

  • Whang, Wan-Kyunn;Oh, In-Se;Lee, Moo-Taek;Yang, Deuk-Sook;Kim, Il-Hyuk
    • Korean Journal of Pharmacognosy
    • /
    • v.25 no.3
    • /
    • pp.209-213
    • /
    • 1994
  • For the investigation of medicinal resources from Taraxacum species, the studies were carried out to evaluate the pharmaco-constituents in the aerial part of Taroxacum hallaisanensis, an endemic plant of Korea. From BuOH fraction of the MeOH extract, compound 1 (protocatechuic acid, $C_7H_6O_4,\;3,4-dihydroxy\;benzoic\;acid)$, compound 2 $[C_{22}H_{31}O_6,\;luteolin-7-O-{\alpha}-_L-rhamnopyranosyl(1{\rightarrow}6)-{\beta}-_D-glucopyranoside]$, and compound 3 $[C_{15}H_{20}O_6,\;luteolin-7-O-{\beta}-_D-glucopyranoside]$ were isolated by column chromatographic separation using polyamide and ODS-gel. The structures were elucidated by means of physico-chemical evidences($^1H-NMR,\;{12}^C-NMR$, IR, EI-Mass, FAB-Mass and GC).

  • PDF

Isolation of Flavonoids from Carthami Flos and their Antioxidative Activity (홍화의 플라보노이드 성분 분리 및 항산화 활성)

  • Chung, Sung-Hee;Moon, Ye-Ji;Kim, Sung-Gun;Kim, Kyoung-Young;Lee, Kyoung-Tae;Kim, Ho-Kyoung;Whang, Wan-Kyunn
    • YAKHAK HOEJI
    • /
    • v.52 no.4
    • /
    • pp.241-251
    • /
    • 2008
  • In this study, isolation of antioxidative compounds was performed for development of anti-oxidizing agent. $CHCl_{3}$, $H_{2}O$, 30%, 60% MeOH, MeOH fractions were examined antioxidative activity by DPPH method, TBARS assay, and SOD like activity. It was revealed that 30%, 60% MeOH fractions had significant antioxidative activity. From 30%, 60% MeOH fraction, nine compounds were isolated and elucidated kaempferol $3-O-{\alpha}-L-rhamnopyranosyl$ $(1{\rightarrow}6)-{\beta}-D-glucopyranoside$ (1), quercetin $7-O-{\beta}-D-glucopyranoside$ (II), quercetin $3-O-{\alpha}-L-rhamnopyranosyl$ $(1{\rightarrow}6)$ ${\beta}-D-glucopyranoside(rutin)$ (III), 6-hydroxykaempferol $3-O-{\beta}-D-glucopyranoside$ (lV), kaempferol $3-O-{\beta}-D-glucopyranosyl$ $(1{\rightarrow}2)$ ${\beta}-D-glucopyranoside$ (V), kaempferol $3-O-{\beta}-D-glucopyranoside$ (VI), luteolin (VII), quercetin $3-O-{\beta}-D-glucopyranoside$ (VIII), apigenin $7-O-{\beta}-D-glucuronopyranoside$ (IX) through physicochemical data and spectroscopic methods (Negative FAB-MS, $^1H-NMR$, $^{13}C-NMR$). Entirely, all compounds had similar antioxidative activity, but more OH group had more antioxidative activity.