• Title/Summary/Keyword: $iDesignFan^{TM}$

Search Result 3, Processing Time 0.017 seconds

Design Program of Low Noise Centrifugal Fans (저소음 원심형 홴의 설계 프로그램)

  • 박준철;손정민;김기황;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.529-535
    • /
    • 2001
  • A centrifugal fan design code was developed and packaged together with iDesignFan/sup TM/ as new models. This code generate centrifugal forward curved and backward curved bladed impeller optimally. It also predicts the aerodynamic performance and the overall sound pressure level of the rotating fan by assuming steady blade loading. The overall sound pressure level is used as an input parameter from the third loop of the designing process to acquire the most silent fan for the given aerodynamic performance parameters. With this kind of inverse design concept used in the code, the period of designing a fan is significantly shortened. A centrifugal fan design code, developed in this study and included in iDesignFan/sup TM/, predicts the aerodynamic performance such as design flow rate and static pressure. The aerodynamic performance in the design and off-design conditions is calculated by using the mean line analysis. For the steady loading calculation, the lift force distribution in a blade is used.

  • PDF

Evaluation of Design Program of Low-Noise Axial Fan (축류형 송풍기 저소음 설계 프로그램의 개발 및 평가)

  • 김기황;박준철;김진화;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.967-972
    • /
    • 2001
  • An axial fan design code, called iDesignFan$^{TM}$, was developed. In this code, three major loss models were used to predicted the aerodynamic performance of a fan. The overall sound pressure level, predicted from steady blade loading, is also used as an input parameter from the third loop of the designing process to acquire most silent fan for the given aerodynamic performance parameters. With this kind of inverse design concept used in this code, the period of designing a fan, which has given aerodynamic performance with minimal acoustic noise, is significantly shortened. The experimental results of a prototype fan, designed by this code, showed that aerodynamic and acoustic performance of an axial fan is reasonably well predicted. Thus, one can design/develop an axial fan in a short time by using the code.e.

  • PDF

Design Parameter Analysis on the Performance and Noise of Axial Fan (축류형 홴 성능 및 소음에 영향을 미치는 설계변수 분석)

  • 김기황;이승배;주재만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.275-281
    • /
    • 2001
  • While basic input parameters for the performance and noise of axial fan are flow rate, pressure rise, rotating speed, and fan diameter, the geometric parameters of blade are sweep angle, solidity, and camber angle. The sweep angle does not affect fan performance much, but on fan noise significantly. Solidity and camber angle are very critical design parameters acting on the fan performance directly. The solidity and camber angle are closely related, therefore they have to be carefully determined for the low-noise and high-performance fan. In This paper, different design points are selceted and also geometric parameters are deliberately changed for the comparison of fan noise. As a result, at the same performance, the input rotational speed affects radiated noise more significantly than others. When solidity and camber angle are increased more than those by iDesignFan/sup TM/ program, more noise is experienced. The blade sweep method and blade numbers at same solidity are observed to results in different levels of performance and noise.

  • PDF