• Title/Summary/Keyword: $d_{33}$ mode

Search Result 139, Processing Time 0.033 seconds

High-Gain 94 GHz Monopulse Antenna Using Folded Reflectarray (Folded Reflectarray를 이용한 고이득 94 GHz 모노펄스 안테나)

  • Lee, Han-Seung;Chae, Hee-Duck;Chun, Jong-Hoon;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.87-94
    • /
    • 2008
  • This paper proposes a high-gain monopulse antenna using the folded reflectarray for a monopulse target-tracking radar systems designed at the center frequency of 94 GHz. In target-tracking radar systems, the angle of arrival of the incoming wave Is determined by comparing the signal received on two or more non-coincident antenna patterns. This is the physical basis of most target-tracking techniques and the comparison is made simultaneously in a monopulse radar systems. In this paper, the antenna consists of polarizing grid, reflectarray, multimode feed horn, and comparator implemented by wavguide. The antenna is able to have three radiation patterns by using the monopulse feed systems assembled by multimode feed horn and comparator. The antenna demonstrates maximum gains 36dB, 33.5dB and 27.2dB at sum mode, azimuth mode, and evevation mode respectively.

A 0.13 ㎛ CMOS Dual Mode RF Front-end for Active and Passive Antenna (능·수동 듀얼(Dual) 모드 GPS 안테나를 위한 0.13㎛ CMOS 고주파 프론트-엔드(RF Front-end))

  • Jung, Cheun-Sik;Lee, Seung-Min;Kim, Young-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • The CMOS RF front-end for Global Positioning System(GPS)are implemented in 1P8M CMOS $0.13{\mu}m$ process. The LNAs consist of LNA1 with high gain and low NF, and LNA2 with low gain and high IIP3 for supporting operation with active and passive antenna. the measured performances of both LNAs are 16.4/13.8 dB gain, 1.4/1.68 dB NF, and -8/-4.4 dBm IIP3 with 3.2/2 mA form 1.2 V supply, respectively. The quadrature downconversion mixer is followed by transimpedance amplifier with gain controllability from 27.5 to 41 dB. The front-end performances in LNA1 mode are 39.8 dB conversion gain, 2.2 dB NF, and -33.4 dBm IIP3 with 6.6 mW power consumption.

  • PDF

Electric-Field-Induced Strain Properties of Multi Layer Ceramic Actuator Using PMN-PZ-PT Ceramics (PMN-PZ-PT 세라믹스를 이용한 적층형 액츄에이터의 변위특성)

  • Ha, Mun-Su;Jeong, Soon-Jong;Koh, Jung-Hyuk;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.620-623
    • /
    • 2003
  • Non-linear behaviors of multilayer piezoelectric ceramic actuator (MCA) were investigated under electrical and mechanical stress. DC 100 V bias was applied to the MCA to obtain displacement. Laser vibrometer, which using Doppler effect, was employed to characterize displacement caused by $d_{33}$ mode of MCA. To understand this non-linear behavior of MCA, displacement was measured and compared under different load states. By increasing load, electric field-induced strain and piezoelectric constant($d_{33}$) of MCA was decreased. We attribute this phenomenon to the domain wall motion and depoling of MCA under heavy load.

  • PDF

Widely Tunable 1.55-${\mu}m$ Detuned Dual-Mode Laser Diode for Compact Continuous-Wave THz Emitter

  • Kim, Nam-Je;Leem, Young-Ahn;Ko, Hyun-Sung;Jeon, Min-Yong;Lee, Chul-Wook;Han, Sang-Pil;Lee, Dong-Hun;Park, Kyung-Hyun
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.810-813
    • /
    • 2011
  • We report the use of a widely tunable detuned dual-mode laser diode (DML) as a compact and portable continuous-wave THz emitter. The wavelength difference between the two lasing modes of this DML can be tuned from 2.4 nm to 9.3 nm by using integrated microheaters. The power difference between these modes is less than 1 dB, and the side-mode suppression ratio is greater than 30 dB over the entire tuning range.

A Study on Implementation and Performance of the Power Control High Power Amplifier for Satellite Mobile Communication System (위성통신용 전력제어 고출력증폭기의 구현 및 성능평가에 관한 연구)

  • 전중성;김동일;배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.77-88
    • /
    • 2000
  • In this paper, the 3-mode variable gain high power amplifier for a transmitter of INMARSAT-B operating at L-band(1626.5-1646.5 MHz) was developed. This SSPA can amplify 42 dBm in high power mode, 38 dBm in medium power mode and 36 dBm in low power mode for INMARSAT-B. The allowable errol sets +1 dBm as the upper limit and -2 dBm as the lower limit, respectively. To simplify the fabrication process, the whole system is designed by two parts composed of a driving amplifier and a high power amplifier. The HP's MGA-64135 and Motorola's MRF-6401 were used for driving amplifier, and the ERICSSON's PTE-10114 and PTF-10021 for the high power amplifier. The SSPA was fabricated by the RP circuits, the temperature compensation circuits and 3-mode variable gain control circuits and 20 dB parallel coupled-line directional coupler in aluminum housing. In addition, the gain control method was proposed by digital attenuator for 3-mode amplifier. Then il has been experimentally verified that the gain is controlled for single tone signal as well as two tone signals. In this case, the SSPA detects the output power by 20 dB parallel coupled-line directional coupler and phase non-splitter amplifier. The realized SSPA has 41.6 dB, 37.6 dB and 33.2 dB for small signal gain within 20 MHz bandwidth, and the VSWR of input and output port is less than 1.3:1. The minimum value of the 1 dB compression point gets more than 12 dBm for 3-mode variable gain high power amplifier. A typical two tone intermodulation point has 36.5 dBc maximum which is single carrier backed off 3 dB from 1 dB compression point. The maximum output power of 43 dBm was achieved at the 1636.5 MHz. These results reveal a high power of 20 Watt, which was the design target.

  • PDF

Sensitivity Properties of Acoustic Emission Sensor Using NKN System Ceramics (NKN계 세라믹을 이용한 음향방출 센서의 감도 특성)

  • Hong, Jae-Il;Shin, Sang-Hoon;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Lee, Sang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.696-701
    • /
    • 2014
  • In this study, in order to develop coupled vibration mode piezoelectric devices for Acoustic Emission (abbreviated as AE) sensor application with outstanding displacement and piezoelectric properties have been simulated by ATILA FEM program. And, From the results of ATILA simulation, the AE sensor specimen, obtained superior electromechanical coupling factor and displacement, when the size of specimen is $3.45mm{\Phi}{\times}3.45mm$ with ratio of diameter/thickness(${\Phi}/T$)= 1.0. Therefore, AE sensor was fabricated by (Na,K,Li)(Nb,Ta) $O_3$(abbreviated as NKL-NT) system piezoelectric ceramics using coupled vibration mode. The piezoelectric properties of NKL-NT ceramics was exhibited that piezoelectric constant($d_{33}$), piezoelectric voltage constant($g_{33}$) and electro mechanical coupling factor($k_p$) have the excellent values of 261[pC/N], 40.10[$10^{-3}Vm/N$], and 0.44, respectively. The manufactured piezoelectric device with ratio of ${\Phi}/T$= 1.0 indicated the optimum values of resonant frequency(fr)= 556.5[kHz], antiresonant frequency(fa)=631.1[kHz], and effective electromechanical coupling factor(keff)= 0.473. The maximum sensitivity of the coupled vibration mode AE sensor was 55[dB] at the resonant frequency of 75[kHz]. The results show that the coupled vibration mode piezoelectric device is a promising candidate for the application AE sensor piezoelectric device.

Influence of Thermal Annealing on the Microstructural Properties of Indium Tin Oxide Nanoparticles

  • Kim, Sung-Nam;Kim, Seung-Bin;Choi, Hyun-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.194-198
    • /
    • 2012
  • In this work, we studied the microstructural changes of ITO during the annealing process. ITO nanoparticles were prepared by the sol-gel method using indium tin hydroxide as the precursor. The prepared sample was investigated using TEM, powder XRD, XPS, DRIFT, and 2D correlation analysis. The O 1s XPS spectra suggested that the microstructural changes during the annealing process are closely correlated with the oxygen sites of the ITO nanoparticles. The temperature-dependent in situ DRIFT spectra suggested that In-OH in the terminal sites is firstly decomposed and, then, Sn-O-Sn is produced in the ITO nanoparticles during the thermal annealing process. Based on the 2D correlation analysis, we deduced the following sequence of events: 1483 (due to In-OH bending mode) ${\rightarrow}$ 2268, 2164 (due to In-OH stretching mode) ${\rightarrow}$ 1546 (due to overtones of Sn-O-Sn modes) ${\rightarrow}$ 1412 (due to overtones of Sn-O-Sn modes) $cm^{-1}$.

Multi-Mode BTC Image Compression Algorithm for LCD Overdriving (LCD 오버드라이브를 위한 다중 모드 BTC 영상 압축 알고리즘)

  • Cho, Moonki;Yoon, Yungsup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.67-74
    • /
    • 2015
  • BTC (Block Truncation Coding) image compression is simple to implement by hardware and has excellent edge retention capability of image, image compression techniques are widely used in LCD overdrive. In this paper, to maintain high visual quality and has high compression rate, Multi-Mode BTC (MM-BTC) algorithm is proposed. The MM-BTC has high compression rate using advanced Y-based BTC method and has high visual quality using improved 2-level and 4-level BTC method in this paper. As shown in simulation results, MM-BTC improves still image PSNR (Peak Signal to Noise Ratio) up to 2.34 dB as compared with other algorithms. When the MM-BTC is applied to LCD overdrive, MM-BTC improves moving picture PSNR up to 2.33 dB as compared with other algorithms in literature.

Growth of $LiNbO_3$ single crystals and evaluation of the dependence of its piezoelectric properties on temperature ($LiNbO_3$단결정 성장 및 온도에 따른 압전 특성 평가)

  • 정화구;김병국;강길영;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.155-165
    • /
    • 1996
  • Growth of $LiNbO_3$ single crystal by Czochralski method was carried out to study the piezoelectric effects. Piezoelectric coefficients and elastic compliances of the $LiNbO_3$ single crystal were determined by the resonance method of length-extentional mode of bar resonator from the room temperature up to $100^{\circ}C$. Two dielectric constants of $LiNbO_3$ were also determined by measuring the capacitance of the plate specimen. Measured constants were piezoelectric coefficients $d_{15},d_{22},d_{31},d_{33}$ elastic compliances $s^E_{11},s^E_{33},2s^E_{13}+2s^E_{44},s^E_{14}$ and dielectric constants $K^T_{11},K^T_{33}$. As temperature increased, elastic compliances changed very slowly while piezoelectric coeffiecients and dielectric constant $K^T_{33}$ changed very rapidly. Electromechanical coupling constant of zyw ($45^{\circ}C$)-bar was as high as 0.51 in room temperature and nearly constant up to $1000^{\circ}C$. The increase of piezoelectric coefficients was mainly due to the increase of dielectric permittivity.

  • PDF

Design of Variable Gain Receiver Front-end with Wide Gain Variable Range and Low Power Consumption for 5.25 GHz (5.25 GHz에서 넓은 이득 제어 범위를 갖는 저전력 가변 이득 프론트-엔드 설계)

  • Ahn, Young-Bin;Jeong, Ji-Chai
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.257-262
    • /
    • 2010
  • We design a CMOS front-end with wide variable gain and low power consumption for 5.25 GHz band. To obtain wide variable gain range, a p-type metal-oxide-semiconductor field-effect transistor (PMOS FET) in the low noise amplifier (LNA) section is connected in parallel. For a mixer, single balanced and folded structure is employed for low power consumption. Using this structure, the bias currents of the transconductance and switching stages in the mixer can be separated without using current bleeding path. The proposed front-end has a maximum gain of 33.2 dB with a variable gain range of 17 dB. The noise figure and third-order input intercept point (IIP3) are 4.8 dB and -8.5 dBm, respectively. For this operation, the proposed front-end consumes 7.1 mW at high gain mode, and 2.6 mW at low gain mode. The simulation results are performed using Cadence RF spectre with the Taiwan Semiconductor Manufacturing Company (TSMC) $0.18\;{\mu}m$ CMOS technology.)