• Title/Summary/Keyword: $a^*/b^*$값

Search Result 4,553, Processing Time 0.038 seconds

Evaluation of the Prediction of B-RISK-FDS-Coupled Simulations for Multi-Combustible Fire Behavior in a Compartment (구획실 내 가연물들의 화재거동에 대한 B-RISK와 FDS 연계 화재 시뮬레이션 예측성능 평가)

  • Baek, Bitna;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.50-58
    • /
    • 2019
  • The prediction performance of B-RISK was evaluated for the fire behaviors of combustibles in a compartment using Fire Dynamics Simulator (FDS). First of all, to predict the heat release rate (HRR) for two combustible sets, the HRR for one combustible set and the design fire curve were used as input values for B-RISK. Comparing results of B-RISK calculations with experimental data for two combustible sets, it was found that B-RISK results predicted insufficiently for fire growth rate of experimental data but there was good agreement for maximum HRR and total HRR with the experimental data. And the B-RISK results were used for input values of FDS to evaluate the fire behaviors of B-RISK results. Comparing results of FDS calculations with experimental data, the simulation results showed that the temperature and concentrations of O2, CO2 in the fire growth phase were different from the experimental data. However, when using the B-RISK result for percentile 70%, the simulation results sufficiently predicted the overall fire behaviors.

Design of White Balance Correction Processor for High Resolution Full Color LED Display System (고해상도 천연색 LED 디스플레이 시스템을 위한 흰색 보정프로세서의 설계)

  • Lee, Jong-Ha;Ko, Duck-Young
    • 전자공학회논문지 IE
    • /
    • v.46 no.3
    • /
    • pp.12-18
    • /
    • 2009
  • In this paper, we developed white balance correction processor for Full Color LED Display System which could be display uniformity color and soft light by adjusting brightness of red, green, blue pixel, individually. This processor correct brightness by calculating operating current of each pixel(red, green, blue LED) on the basis of characteristic curve of LED device when we named "a" as a specific characteristic value, "b" as a brightness correction value according to using time, "X" as a operating current value, and "Y" as brightness value. As the results, we solved the reduction problem of brightness for long used LED devices, according to increase entire mean of brightness value by adjusting "b" value from the brightness characteristic function.

Quality Evaluation of Korean Cabbage Kimchi by Instrumentally Measured Color Values of Kimchi Juice (김치액의 색상에 의한 배추 김치의 품질 평가)

  • 노홍균;이명희;이명숙;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 1992
  • Color of kimchi juice was measured instrumentally to evaluate the quality of Korean cabbage kimchi during fermentation at 4$^{\circ}C$ and 16$^{\circ}C$ . These results were compared with those of chemical analyses of kimchi juice and sensory evaluation for kimchi. Chemiral analyses and sensory evaluation showed that the kimchi has reached pH 4.3, the pH value under an optimum ripening period, after 3-days fermentation at 16$^{\circ}C$ with almost the highest contents of vitamin C and carotenoids as well as desirable sour taste and texture. At 4$^{\circ}C$ the kimchi was unripened after 6-days fermentation. At 16$^{\circ}C$, $L^{*}$ value of kimchi juice did not show any significant change during fermentation periods. However, $a^{*}$ value increased until day 4$^{\circ}C$ and thereafter decreased sharply. $b^{*}$ value increased until day 3 and then showed no change. High correlations were seen between volume of kimchi juice, pH, total acidity and $L^{*}$or $b^{*}$ value, and between carotenoid content and $a^{*}$ value, respectively. It was desirable to use color $a^{*}$ or $b^{*}$ value of kimchi juice to evaluate the quality of kimchi. The kimchi was under an over-ripening period when $a^{*}$ value was equal to or lower than the initial value, or when $b^{*}$ value was almost constant. Predicting an optimum ripening period was possible by using a proportional value of $a^{*/}$ $b^{*}$ , i.e., unripening period, 1 $\geq$ and near 1 ; optimum ripening period, near 0.8 ; over-ripening period, < 0.8.eriod, < 0.8.d, < 0.8.

  • PDF

열처리가 유자의 과피 색상에 미치는 영향

  • 김은정;서자영;홍석인;박재복;김동만
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.115.2-116
    • /
    • 2003
  • 중온처리가 유자의 품질에 미치는 영향을 조사키 위해 유자를 4$0^{\circ}C$에 1~3일간 처리한 후 이를 5$^{\circ}C$에 저장하면서 유자의 품질인자로서 중요한 과피의 표면색상 변화를 무처리구와 비교하였다. 열 처리한 유자를 5$^{\circ}C$의 저온 저장고에 1일 방치하여 품온을 낮춘 후 유자의 과피 색을 분석하였던 바 “L”값과 “b” 값은 무처리구와 뚜렷한 차이를 보이지 않았으나 “a”값은 무처리구에 비해 낮은 값을 보였는데 이러한 차이는 열 처리시간이 길수록 현저하였다. 또한 열처리 정도에 따라 hue angle값과 chroma값은 차이를 보이지 않았으나 $\Delta$E값과 hue값은 처리구간에 뚜렷한 차이를 보였다. 열처리한 유자의 저장 중 과피의 색상 변화를 조사하였던 바 “L”값과 “b” 값은 감소하였으나 “a”값은 증가하였다. 이 중 열 처리구의 “a”값 증가율과 “b” 값 감소율은 무처리구에 비해 낮았는데 이와 같은 차이는 열처리 정도에 따라 보다 뚜렷하였다. 또한 저장기간이 경과함에 따라 $\Delta$E값은 증가하였고 chroma값, hue값 및 hue angle값은 감소하였는데 이들 값의 변화정도 역시 열 처리정도에 따라 차이를 보였다. 한편 이와 같은 열 처리구와 무처리구의 과피 색상 차이는 과피의 미세구조 관찰 결과 열처리가 과피 표면 왁스의 분포에 영향을 주었고, 과피 색소를 과피 표면 부위에 고정시켰으며, 저장중 과피색소의 내부침착을 억제하였기 때문이었던 것으로 판단되었다.

  • PDF

Color lens CIE L*a*b* coordination transfer by tinted time (착색시간에 따른 칼라렌즈 색좌표 이동)

  • Jeong, Byung-Mann;Park, Kwang-Ho;Kim, Yong-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • R, G, Y, B color lenses Manufactured increasing tinted time by 5 min term. CIE $L^*a^*b^*$ coordination's analysis used spectrophotometer and CIE $L^*a^*b^*$ color system. CIE $L^*a^*b^*$ coordination transfer form about tinted time being $$b^*(Y-B)={\beta}a^*+{\alpha}$$ change to do linear almost. In red case, move in $G{\rightarrow}R$, $B{\rightarrow}Y$ form tinted time increases, and Parameter ${\alpha}$, ${\beta}$ value got each -3.49 and 0.90. In green case, CIE $L^*a^*b^*$ coordination transfer form is $R{\rightarrow}G$, $B{\rightarrow}Y$ form. Got the pure green color color in 10 min's tinted time. Parameter ${\alpha}$, ${\beta}$ value got each -0.72 and -0.55. Get into pure yellow and blue color case tinted time increases. Parameter ${\alpha}$, ${\beta}$ value are 14.11 and 1.58 in yellow, and Parameter ${\alpha}$, ${\beta}$ value are -11.62 and 1.30 in blue color.

  • PDF

PROPOSAL OF NEW DENIAL COLOR-SPACE FOR AESTHETIC DENIAL MATERIALS (치과용 심미 수복 재료들의 색상 연구를 통한 새로운 치과용 색체계의 제안)

  • Oh, Yun-Jeong;Park, Su-Jung;Kim, Dong-Jun;Cho, Hyun-Gu;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • The purpose of this study is to develope new dental color-space system. Twelve kinds of dental composites and one kind of dental porcelain were used in this study. Disk samples (15 mm in diameter, 4 mm in thickness) of used materials were made and sample's CIE $L^*a^*b^*$ value was measured by Spectrocolorimeter (MiniScan XE plus, Model 4000S, diffuse/$8^{\circ}$ viewing mode, 14.3 mm Port diameters, Hunter Lab USA) The range of measured color distribution was analyzed. All the data were applied in the form of T### which is expression unit in CNU Cons Dental Color Chart. The value of $L^*$ lies between 80.40 and 52.70. The value of $a^*$ are between 10.60 and 3.60 and $b^*$ are between 28.40 and 2.21. The average value of $L^*$ is 67.40, and median value is 67.30. The value of $a^*$ are 2.89 and 2.91 respectively. And for the $b^*$, 14.30 and 13.90 were obtained. The data were converted to T### that is the unit count system in CNU-Cons Dental Color Chart. The value of $L^*$ is converted in the first digit of the numbering system. Each unit is 2.0 measured values. The second digit is the value of $a^*$ and is converted new number by 1.0 measured value. For the third digit $b^*$ is replaced and it is 2.0 measured unit apart. T555 was set to the value of $L^*$ ranging from 66.0 to 68.0, value of $a^*$ ranging from 3 to 4 and $b^*$ value ranging from 14 to 16.

Target Strength of Schlegel′s Black Rockfish (Sebastes schlegeli)and Red Seabream (Pagrus major) (조피볼락과 참돔의 표적 강도에 관한 연구)

  • 손창환;황두진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2002
  • This study investigates dorsal aspect target strength with fish size, tilt angle and frequency characteristics for the schlegel's black rockfish(Sebastes achlegeli) and the red seabream (Pagrus major). This study was carried out on free swimming fish in a cage in order to obtain acoustic data of the biomass estimation using the scientific echo sounder. The results obtained from this study are summarized as follows; 1 The coefficients of the schlegel's black rockfish and the red seabream using maximum TS with fish length were expressed -63.7dB and -62.6dB at a frequency of 38kHz, -64.4dB and -65.4dB at 120kHz, and -62.4dB and -65.0dB at 200kHz, respectively. 2. The coefficients of the schlegel\`s black rockfish and the red seabream using averaged TS with fish length were expressed -68.4dB and -67.9dB at a frequency of 38kHz, -73.4dB and -72.7dB at 120kHz, and -70.BdE and -73.4dB at 2001Hs, respectively. 3. The coefficients of the schlegel's black rockfish and the red seabream using maximum TS with body weight were expressed -52.0dB and -50.9dB at a frequency of 38kHz, -52.7dB and -53.7dB at 120kHz, and -50.7dB and -53.3dB at 200kHz, respectively. 4. The coefficients of the schlegel's black rockfish and the red seabream using averaged TS with body weight were expressed -56.7dB and -56.2dB at a frequency of 38kHz, -61.7dB and -61.0dB at 120kHz, and -59.ldE and -61.6dB at 200kHz, respectively. 5. Varying the tiIt angle of the two red seabream from -26$^{\circ}$to +25$^{\circ}$, the variation width of target strength expressed smaller at a frequency of 38kHz than at 120kHz and expressed about 3~6dB higher head up than head down at 120kHz.

Measurement and evaluation of speech privacy in university office rooms (대학 내 사무실의 스피치 프라이버시 측정 및 평가)

  • Lim, Jae-Seop;Choi, Young-Ji
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.396-405
    • /
    • 2019
  • The speech privacy of closed office rooms located in a university campus was measured and assessed in terms of SPC (Speech Privacy Class) values. The measurements of two quantities, the LD (Level Difference) between a source and a receiving room, and the background noise level ($L_b$) at the receiving room were carried out in 5 rooms located in 3 different buildings in the university campus. Each of the 5 rooms was adjacent to both offices and corridors through walls. The TL (Transmission Loss) between the source and the receiver room was also measured to compare the difference of two standard methods, ASTM E2836-10 and KS F 2809. The present results show that the speech privacy of the 5 office rooms is not met the requirement for a minimum SPC values of 70. A minimum LD value of 41 dB between the source and the receiver room should be achieved for having a SPC value of 70 when the mean measured value of $L_b$ at the receiving room is 29.2 dB. That is, the TL(avg) value averaged over the octave bands from 160 Hz to 5000 Hz between the source and the receiver room should be or greater than 40 dB. The most important architectural factor influencing the LD value is the presence of openings, such as doors, and windows, on the adjacent walls between the source and receiving room. Therefore, if the opening of the adjacent wall is replaced by an opening with high sound insulation, the appropriate SPC value of the research and office rooms can be achieved.

Magnetic Resonance Imaging uses 3D Printed Material of Headset (Noise Reduction Effect) (자기공명영상 검사 시 3D 프린팅 재료를 이용한 헤드셋 연구 (소음저감 효과))

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.335-341
    • /
    • 2018
  • With the improvement of medical state, patients' expectations for the most advanced medical equipment are increasing. Particularly, Magnetic Resonance Image (MRI) is used as one of the core image diagnosis methods in all clinical area. However, it has been reported that many of patients who go through the examination suffer from anxiety to the severe noise level during the examination. In this study, both the noise reduction evaluation of headsets with sound-blocking materials added to existing sound-absorbing materials and the existence of sound blocking materials as artifacts on the examination image are tested. An MRI test noise is recorded as a speaker by cross-ordination the sound material (sponge) and the sound material (acrylic plate, copper plate, and 3D copper plate) inside the headset made from 3D pring. A quantitative assessment of headsets showed that the average headset value was 81.8 dB. The average dB value of the most soundproof material combination(Copper, acrylic plate, sponge, sponge) headsets on headsets with added charactering material was measured at 70.4 dB, and MRI showed that the copper was diamagnetic substance and excluded. The second most soundproof headset(Sponge, acrylic plate, 3D copper plate, sponge) was measured at 70.6 dB and MRI showed no artifacts. The same simulation of the material printed with a 3D copper PLA containing approximately 40 % copper powder resulted in no artifacts, therefore, the material output as a 3D printing was better suited for use. For MRI related research, the mutual development of 3D printing is highly anticipated.

Chlorophyll a/b Ratio as a Criterion for the Reliability of Absorbance Values Measured for the Determination of Chlorophyll Concentration (엽록소 농도 결정을 위하여 측정한 흡광도 값의 신뢰도 검정 지표로서 엽록소 a/b 비례치)

  • Wu, Guangxi;Lee, Choon-Hwan
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.509-513
    • /
    • 2019
  • The Beer-Lambert law states that absorbance is proportional to the concentration of a solute in a solution at a given wavelength. This linearity works for an ideal or a 'sufficiently diluted' solution, so this linearity is often used as a criterion for the fidelity of the absorbance value measured. In this study, we used a chlorophyll (Chl) solution, isolated from rice leaves with 80% acetone to test the use of the Chl a/b ratio as an additional criterion for checking the fidelity of measured values using four different absorption spectrophotometers: Cary4E, UV-1650PC, Versamax (a microplate reader), and NanoDrop 1,000(which can handle a $4{\mu}l$ aliquot). We used Chl solutions of varying concentrations from $0.2{\mu}g/ml$ to $200{\mu}g/ml$ to measure absorbance values at 645 nm and 663 nm and checked the linearity first. The results indicated that the range of Chl concentrations that we can rely on based on the linearity was similar to the range in which the calculated Chl concentrations based on the measured absorbance values agreed with the known concentrations. However, some border cases or cases with very low Chl concentrations inside the fidelity range of Chl concentrations did not agree with the criterion that the Chl a/b ratio should not change after dilution of the Chl in the solution. These results suggest that the Chl a/b ratio is a better criterion for the reliability of the absorbance values measured for the determination of chlorophyll concentration than the criterion based on the linearity suggested by the Beer-Lambert law.