• 제목/요약/키워드: $ZrO_2-8%Y_2O_3$

검색결과 449건 처리시간 0.029초

CuO 첨가에 따른 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 세라믹스의 유전 이완 특성 (Dielectric Relaxation Properties of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 Ceramics with CuO Addition)

  • 배선기;신혜경;이석진;임인호
    • 한국전기전자재료학회논문지
    • /
    • 제28권2호
    • /
    • pp.80-84
    • /
    • 2015
  • We investigated the dielectric relaxation properties $0.5Ba(Zr_{0.2}Ti_{0.8})O_3-0.5(Ba_{0.7}Ca_{0.3})TiO_3$ ceramics with CuO addition. With increasing CuO addition, the lattice parameter was increased by substitution of small amount $Cu^{2+}$ ion in B-site of $0.5Ba(Zr_{0.2}Ti_{0.8})O_3-0.5(Ba_{0.7}Ca_{0.3})TiO_3$ ceramics. Also the grain size and the maximum dielectric constant of $0.5Ba(Zr_{0.2}Ti_{0.8})O_3-0.5(Ba_{0.7}Ca_{0.3})TiO_3$ ceramics was decreased with increasing amounts of CuO addition. Moreover, the diffused phase transition properties (${\gamma}$) of $0.5Ba(Zr_{0.2}Ti_{0.8})O_3-0.5(Ba_{0.7}Ca_{0.3})TiO_3$ ceramics was increased by compositional fluctuation with increasing of CuO amount, changed from 1.45 at 1 wt% CuO addition to 1.94 at 7 wt% CuO addition.

이트리아 안정화 지르코니아에서 미세조직 설계에 따른 전기전도도와 파괴인성치의 적정화 (Optimization of Electrical Conductivity and Fracture Toughness in $Y_2O_3-Stabilized$ $ZrO_2$ through Microstructural Designs)

  • 강대갑;김선재
    • 한국세라믹학회지
    • /
    • 제31권7호
    • /
    • pp.772-776
    • /
    • 1994
  • Using two kinds of ZrO2 powder stabilized by 8 mol% and 3 mol% of Y2O3 several microstructures were designed; two single composition specimens of 8 mol% Y2O3-ZrO3 and 3 mol% Y2O3-ZrO2 and five mixture specimens with multi-layered structure and particulate mixture structure at a mixing ratio of 1:1 by weight. Electrical conductivities were measured from 250 to 75$0^{\circ}C$ in air using an impedance analyser, and fracture toughness at room temperature using the indentation method. Making the mixture structures was more effective in enhancing fracture toughness than electrical conductivity. At low temperatures 3 mol% Y2O3-ZrO2 showed the highest values in both electrical conductivity and fracture toughness, while at high temperature the specimens of alternately stacked planar and coarse granulated structure were most favorable.

  • PDF

$Al_2O_3$로 피복시킨 세라믹 복합분체의 제조 및 특성: (III) $Al_2O_3-ZrO_2$ 복합분체 (Preparation and Characteristics of Ceramic Composite Powders Coated with $Al_2O_3$: (III) Composite Powders of $Al_2O_3-ZrO_2$)

  • 현상훈;이지현;송원선
    • 한국세라믹학회지
    • /
    • 제29권8호
    • /
    • pp.667-673
    • /
    • 1992
  • The alumina-zirconia composite powders of core particle ZrO2 coated with Al2O3 were prepared by the hydrolysis-deposition of the mixed aluminum salt solution of Al2(SO4)3-Al(NO3)3-Urea. The effects of hydrolysis reaction and coating parameters on characteristics of coated powders and composites were also investigated. The degree of coating could be estimated from the ratio of tetra-/mono-ZrO2 present at the room temperature after heat-treating coated powders at 120$0^{\circ}C$ and the result of TEM observations. When the content of ZrO2 in the dispersed coating system, the coating time, and the volume ratio of water/solution were 50 mg/g, 180 min, and 5, respectively the coating efficiency was maximum (the ratio of tetra-/mono-ZrO2 was 87/13). The relative densities of coated Al2O3-ZrO2 composites sintered at 1$650^{\circ}C$ for 4 hrs were about 91~98% and the maximum ratio of tetra-/mono-ZrO2 in Al2O3-20wt% ZrO2 composites was 62/38.

  • PDF

침전법에 의한 Al2O3-ZrO2-Y2O3계 세라믹스의 기계적 특성 (Mechanical Properties of the Ceramics of the System Al2O3-ZrO2-Y2O3 Prepared by the Precipitation Method)

  • 김준태;이홍림
    • 한국세라믹학회지
    • /
    • 제25권4호
    • /
    • pp.364-372
    • /
    • 1988
  • The mechanical properties and microstructure of ceramics of the system Al2O3-ZrO2-Y2O3 sintered at 1$650^{\circ}C$ for 2h after powder preparation by the precipitation method from Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were investigated. The Al2O3-ZrO2-Y2O3 ceramics sintered at 1$650^{\circ}C$ for 2h after mixing alpha-Al2O3 and ZrO2-Y2O3 powders, both were separately precipitated and calcined, were found to have the relative density higher than 97.5% so that the strengthening and toughening mechanisms could be explained mainly as the stress-induced phase transformation. On the other hand, the sintered bodies prepared by co-precipitating the three starting materials were measured to have the relative density lower than 85% so that the degradation of strength were observed above 15 vol% ZrO2 contents due to the high porosity by which the effect of stress-induced phase transformation was assumed to be depressed.

  • PDF

Al2O3/ZrO2요업체에서 공침에 의한 ZrO2입자의 분산 (Dispersion of ZrO2 by Coprecipitation in Al2O3/ZrO2Ceramics)

  • 조명제;최정림;박정권;황규홍;이종국
    • 한국세라믹학회지
    • /
    • 제39권7호
    • /
    • pp.704-709
    • /
    • 2002
  • ZrO$_2$가 분산된 $Al_2$O$_3$/ZrO$_2$ 복합체의 기계적 성질을 향상시키기 위하여 분산되는 ZrO2의 입자크기를 공침법에 의해 초미립으로 균질하게 분산시키기 위한 방안을 고찰하여 보았다. 일반적으로 $Al_2$O$_3$와 ZrO$_2$ 분말의 기계적혼합에 의해 제조되는 경우 분산되는 ZrO$_2$ 출발입자의 크기도 크고 소결시에도 비교적 빠르게 성장하므로 본 연구에서는 상용의 이소결성 $\alpha$-Al$_2$0$_3$ 분말(Sumitomo:AES-11(0.5$mu extrm{m}$)) 및 저온 소결용 초미립 알루미나(Taimei Chemical(0.22$\mu\textrm{m}$))에 ZrOC1$_2$. 8$H_2O$ 와 Y(NO$_3$)$_3$를 pH 9.5의 조건에서 공침하여 $\alpha$-Al$_2$0$_3$입자 표면에 초미립의 미세한 Zr(OH)$_4$ 침전 입자가 부착되도록 하였다. 이를 150$0^{\circ}C$-1$600^{\circ}C$의 온도에서 소결하여 작은 크기의 ZrO$_2$ 입자가 균질하게 분산된 $Al_2$O$_3$/ZrO$_2$ 복합체를 제조하였으며 이의 기계적성질을 관찰하였다.

$Y_2O_3-ZrO_2$$Al_2 O_3$ 매트릭스에 분산시 응력 유기 상변태의 효과 (Effect of Stress Induced Phase Transformation on $Al_2 O_3$ Matrix Dispersed with $ZrO_2-Y_2O_3$)

  • 이태근;임응극;김환
    • 한국세라믹학회지
    • /
    • 제22권1호
    • /
    • pp.11-18
    • /
    • 1985
  • The effect of stress induced phase transformation on $Al_2 O_3$ matrix dispersed with $ZrO_2-Y_2O_3$ has been studied. In order to determinate the mechanical properties three $Al_2O_3-ZrO_2$ composite series containing 1, 3 and 5 mole% $Y_2O_3$ were prepared. The starting materials were $Al_2O_3$ and $ZrO_2-Y_2O_3$ which was prepared from the aqueous solution of high purity $YCl_3$.$6H_2O$ and $ZrOCl_2$.$8H_2O$. Powder mixtures of $Al_2O_3-ZrO_2$ containing $Y_2O_3$ have been prepared by ball-milling with methanol and the samples were formed by isostatic press and sintered at 150$0^{\circ}C$ for 2hrs. After sintering. the specimens were polished for mechanical determination. The relative density of sintered specimens were also measured. It was found that the addition of 1, 3mole% to {{{{ { ZrO}_{2 } }} allowed full retention of the tetragonal phase in $Al_2O_3-ZrO_2$ but partially stabilized zirconia (PSZ) was produced by additions of 5 mole% $Y_2O_3$.The critical stress-intensity factor KIc of $A_2O_3-ZrO_2$ (containing 1 mole% $Y_2O_3$) composite materials increased with increasing $ZrO_2$ content, The maximum value of KIC=7Mn/$m^3$/2 at 20 mole% $ZrO_2$ exhibited about twice that of the $Al_2 O_3$ The modulus of rupture exhibited a trend similiar to KIC The maximum value of MOR was 580MN/m2. As the amount of Y2O3 increase it was observed that the maximum of KIC and MOR decreased : Additions of 3 mole% $Al_2O_3$ $Y_2O_3$ allowed the maximum of KIC 6MN/$m^3$/2 MOR 540MN/$m^2$ at 15 mole% $ZrO_2$ additions of 5 mole% $Y_2O_3$ allowed the maximum of KIC 5MN/$m^3$/2 MOR 410MN/$m^2$ at 10 mole% $ZrO_2$.

  • PDF

플라즈마/레이저 복합용사에 의한 $ZrO_2-8%Y_2O_3$ 코팅층의 미세구조 및 기계적 특성 (Microstructures and Mechanical Properties of $ZrO_2-8%Y_2O_3$ Coating Layer by Plasma/Laser Complex Spraying)

  • 김영식;오명석
    • 동력기계공학회지
    • /
    • 제4권4호
    • /
    • pp.48-53
    • /
    • 2000
  • This study was aimed at observing the influence of laser irradiation on a $ZrO_2-8%Y_2O_3$ ceramic coating layer fabricated by plasma spraying. The $ZrO_2-8%Y_2O_3$ ceramic powder was plasma sprayed onto SS400 carbon steel substrate and laser irradiated on the coating layer under various conditions of laser power and beam diameters. As to the as-sprayed specimen and laser-treated specimen, a hardness test and a microstructure analysis were performed. Hardness was measured by a microhardness tester; microstructure was observed by an optical microscope and a scanning electron microscope. The result was that the microstructure of the laser-irradiated coating layer was dense; porosities almost disappeared and hardness increased. It was also observed that microcracks occured in the laser-irradiated coating layer.

  • PDF

상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권11호
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

V$_2$O$_5$의 첨가가 (Zr$_{0.8}$,Sn$_{0.2}$)TiO$_4$의 마이크로파 유전특성에 미치는 영향 (Effect of V$_2$O$_5$ Addition on Microwave Dielectric Properties of (Zr$_{0.8}$,Sn$_{0.2}$)TiO$_4$)

  • 이경호
    • 마이크로전자및패키징학회지
    • /
    • 제8권1호
    • /
    • pp.27-32
    • /
    • 2001
  • ($Zr_{0.8}, Sn_{0.2})TiO_4$의 소결온도를 저하시키고 품질계수 향상의 목적으로 첨가한 $V_2O_5$가 다른 donor형태의 화합물과 달리 품질계수의 저하를 가져오는 원인을 $Ta_2O_5$가 첨가된 ($Zr_{0.8}, Sn_{0.2})TiO_4$와 미세 구조변화, 전기전도도, 산화상태의 관점에서 비교 분석하였다. 일반적으로 donor형태의 화합물의 첨가는 ($Zr_{0.8}, Sn_{0.2})TiO_4$의 산소공공의 농도를 감소시켜 품질계수의 증가를 가져오는 것으로 알려져 있다. $V_2O_5$의 첨가의 경우는 액상소결에 의한 결정입계상 존재, 섬유상 형태의 $V_2O_5-TiO_2$rich 이차상 형성 및 Vanadium 이온의 산화상태 불안정에서 기인된 산소공공의 농도 증가가 복합적으로 ($Zr_{0.8}, Sn_{0.2})TiO_4$의 품질계수 저하 요인으로 작용하였다.

  • PDF

지르코니아-알루미나 세라믹 복합재료에 관한 연구 (A Study on the Alumina Ceramic Composite Dispersed With the Zirconia)

  • 박재성;이영신
    • 전자공학회논문지 IE
    • /
    • 제49권2호
    • /
    • pp.1-8
    • /
    • 2012
  • 단사정 구조의 순수 $ZrO_2$ 또는 5.35wt%의 $Y_2O_3$를 첨가한 정방정 구조의 $Y_2O_3(Y-TZP)$$Al_2O_3$에 첨가하여 그 기계적 특성 및 열충격 저항성을 연구하였다. $ZrO_2(m)$와 Y-TZP의 첨가량이 커짐에 따라 $Al_2O_3$의 소결 밀도가 증가하였다. 또한 Y-TZP의 첨가량이 증가함에 따라 비커스 경도도 증가하였고 첨가량 20wt%에서 최고값을 나타내었다. 시편의 경도는 소결 밀도에 의존함을 알 수 있었다. $ZrO_2(m)$나 Y-TZP 첨가량의 증가는 파괴인성을 향상시키는 결과를 얻을 수 있었다. 이러한 결과로 $Al_2O_3$의 경도는 $ZrO_2$의 transformation toughening 뿐 아니라 미세균열 강화에서도 얻어짐을 알 수 있었다. 단사정 구조의 순수 $ZrO_2$의 첨가는 $Al_2O_3-ZrO_2$의 열 충격 저항성을 향상시켰다. 결정입도는 $ZrO_2$의 첨가량이 증가함에 따라 커진다.