• 제목/요약/키워드: $ZrB_2$

검색결과 342건 처리시간 0.03초

알루미나/니켈크롬강 접합체의 미세조직 및 접합강도에 미치는 Ag-Cu-Zr-X 브레이징 합금성분의 영향 (Effect of the Alloying Elements in Ag-Cu-Zr-X Brazing Alloy on the Microstructure and the Bond Strength of $Al_2O_3$/Ni-Cr Steel Brazed Joint)

  • 김종헌;유연철
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.465-473
    • /
    • 1998
  • The effect of alloying elements of Ag-Cu-Zr-X brazing alloy on the microstructure and the bond strength of $Al_2O_3/Ni-Cr$ brazed steel joint was investigated. The reaction layer, $ZrO_2$ (a=5.146 ${\AA}$ , b=5.213 ${\AA}$ , c=5.311 ${\AA}$ )was formed at the interface of $Al_2O_3/Ni-Cr$ steel joint by the redox reaction between alumina and Zr. The addition of An and Al to the Ag-Cu-Zr brazing alloy gave rise to changes in the thickness of the reaction product layer and the morphology of the brazement. Sn caused the segregation of Zr was decreased b Al the $ZrO_2$ layer formed at the Ag-Cu-Zr-Al alloy was thinner than that of $ZrO_2$ formed at the Ag-Cu-Zr-An alloy. The fracture shear strength was strongly dependent on the microstructure of the brazement. Brazing with Ag-Cu-Zr-Sn alloy resulted in a better bond strength than with Ag-Cu-Zr or Ag-Cu-Zr-Al alloy.

  • PDF

상압소결(常壓燒結)한 SiC-$ZrB_2$ 도전성(導電性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive)

  • 신용덕;주진영;고태헌;이정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1230-1231
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of 8${\sim}$20[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.01[%], 81.58[Mpa], 31.437[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. In this paper, it is convinced that ${\beta}$-SiC based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

  • PDF

고포화자화 (Fe, Co)-Zr-B-Cu계 초미세결정립합금의 자기특성

  • 조용수;김동환;김택기
    • 한국자기학회지
    • /
    • 제3권3호
    • /
    • pp.185-189
    • /
    • 1993
  • 급속응고법으로 제작된 비정질 $Fe_{85-x}Co_{x}Zr_{7}B_{7}Cu_{1}$ 합금의 열처리에 따른 구조 및 자기특성이 조사되었다. 비정질 $Fe_{85-x}Co_{x}Zr_{7}B_{7}Cu_{1}$ 합금은 $600^{\circ}C$이하의 열처리온도에서 약 10 nm의 초미세결정립이 형성된다. $600^{\circ}C$이상의 열처리 조건에서는 결정립크기가 급격히 증가하여 자기특성을 열화시킨다. $Fe_{85-x}Co_{x}Zr_{7}B_{7}Cu_{1}$ 합금의 최적열처리온도는 Fe-Zr-B초미세결정립합금에 비하여 낮으며, 결정립크기 또한 감소한다. 이는 Cu의 첨가에 기인하는 것으로 판단된다. 최적열처리조건에서 $Fe_{80}Co_{5}Zr_{7}B_{7}Cu_{1}$ 초미세결정립합금의 포화자화 및 f=50 kHz, $B_{m}=0.2\;T$에서 측정한 투자율 및 철손은 각각 157.3 emu/g(1.5 T), $1.8{\times}10^{4}$ 및 13 W/kg으로 자기특성이 가장 우수하다.

  • PDF

상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영;고태헌;이정훈
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

기계적합금법에 의한 $\textrm{TiB}_2$ 분말의 제조 및 Zr과 Ta이 합성에 미치는 영향 (Synthesis of $\textrm{TiB}_2$ Powder by Mechanical Alloying and the Effect of Zr and Ta Substitution for Ti)

  • 황연;강을손
    • 한국재료학회지
    • /
    • 제9권8호
    • /
    • pp.787-791
    • /
    • 1999
  • 기계적합금법으로 Ti와 B의 혼합분말로부터 $TiB_2$분말을 제조하였고, Zr과 Ta의 Ti 치환 효과를 조사하였다. (Ti+B)의 혼합분말을 280시간 분쇄하여 $TiB_2$단일상을 얻었고 기계적합금화 도중 비정질상은 관찰되지 않았다. Ti의 일부를 원자반경이 Ti보다 큰 Zr으로 치환한 결과 기계적합금화에 걸리는 시간이 크게 감소한 반면에, 붕화물 생성열이 절대값이 $TiB_2$상보다 작은 Ta로 치환하면 280시간 분쇄하여도 단일상을 형성하지 못하였다.

  • PDF

Transmission Electron Microscopy Investigation of Hot-pressed ZrB2-SiC with B4C Additive

  • Kim, Seongwon;Chae, Jung-Min;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.462-466
    • /
    • 2015
  • This paper reports the microstructure of hot-pressed $ZrB_2$-SiC ceramics with added $B_4C$ as characterized by transmission electron microscopy. $ZrB_2$ has a melting point of $3245^{\circ}C$, a relatively low density of $6.1g/cm^3$, and specific mechanical properties at an elevated temperature, making it a candidate for application to environments with ultra-high temperatures which exceed $2000^{\circ}C$. Due to the non-sinterability of $ZrB_2$-based ceramics, research on sintering aids such as $B_4C$ or $MoSi_2$ has become prominent recently. From TEM investigations, an amorphous layer with contaminant oxide is observed in the vicinity of $B_4C$ grains remaining in hot-pressed $ZrB_2$-SiC ceramics with $B_4C$ as an additive. The effect of a $B_4C$ addition on the microstructure of this system is also discussed.

알루미늄 합금에서 Zr첨가가 TiB2의 변형과 결정립크기에 미치는 영향 (Influence of Zr Addition on TiB2 Modification and Grain Size in Aluminium Alloys)

  • 강원덕;박현균
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.619-627
    • /
    • 2011
  • The poisoning effect of Zr in aluminum alloys was investigated by analyzing the filtered cakes of aluminum alloy melt taken with the $Prefil^{(R)}$ footprinter through a variety of analytic instruments, SEM/EDX, Auger, and TEM. Experimental results indicated that the morphology and chemical composition of the aluminum alloys were not modified with the addition of Zr, which is to previous belief that Zr poisoning is caused by modification of $(Ti_{1-x}Zr_x)Al_3$. On the other hand, $TiAl_3$ surroundig $TiB_2$ particles was modified and its lattice parameter was more mismatched by increasing Zr content, leading to less nucleation rate. This is also supported by the observation that the poisoning effect is reduced when Ti is added, resulting in a lower content ratio of Zr to Ti. These results suggest that extra Ti should be added to eliminate the poisoning effect of Zr in aluminum alloys containing Zr.

상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권11호
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

$Al_{2}O_{3}+Y_{2}O_{3}$를 첨가한 $\beta$-SiC-$ZrB_2$ 복합체의 특성 (Properties of the $\beta$-SiC-$ZrB_2$ Composites with $Al_{2}O_{3}+Y_{2}O_{3}$ additives)

  • 신용덕;주진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.853-855
    • /
    • 1998
  • The electrical resistivity and mechanical properties of the hot-pressed and annealed ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_{3}$(6:4wt%). In this microstructures. no reactions were observed between $\beta$-SiC and $ZrB_2$, and the relative density is over 97.6% of the theoretical density. Phase analysis of composites by XRD revealed mostly of a $\alpha$-SiC(6H, 4H), $ZrB_2$ and weakly $\beta$-SiC(15R) phase. The fracture toughness decreased with increased $Al_{2}O_{3}+Y_{2}O_{3}$ contents and showed the highest for composite added with 4wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives. The electrical resistivity increased with increased $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation according to amount of liquid forming additives $Al_{2}O_{3}+Y_{2}O_{3}$. The electrical resistivity of composites is all positive temperature coefficient resistance(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

ZrB2-SiC 복합세라믹스의 미세구조와 기계적 물성에 미치는 소결 공정, 첨가제 효과 (The Effect of Sintering Processes and Additives on the Microstructures and Mechanical Properties of ZrB2-SiC Composite Ceramics)

  • 권창섭;채정민;김형태;김경자;김성원
    • 한국분말재료학회지
    • /
    • 제18권6호
    • /
    • pp.562-567
    • /
    • 2011
  • This paper reports the effect of sintering processes and additives on the microstructures and mechanical properties of $ZrB_2$-SiC composite ceramics. We fabricated sintered bodies of $ZrB_2$-20 vol.% SiC with or without sintering additive, such as C or $B_4C$, densified by spark plasma sintering as well as hot pressing. While almost full densification was achieved regardless of sintering processes or sintering additives, significant grain growth was observed in the case of spark plasma sintering, especially with $B_4C$. With sintered bodies, mechanical properties, such as flexural strength and Vickers hardness, were also examined.