• Title/Summary/Keyword: $Znq_2$

Search Result 13, Processing Time 0.025 seconds

The Luminance Characteristics of Organic ELD Based on Znq2 and TPD (Znq2와 TPD에 기초한 유기 ELD의 발광 특성)

  • Jung Seung-Jun;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • The Bis(8-oxyquinolino) zinc lII (Znq2) were synthesized successfully from zinc chloride $(ZnCl_2)$ as a initial material . The organic electroluminescece devices (ELDs) were fabricated with N-N'-diphenyl-N-N'-bis (3-meth-ylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) which act as a hole transporting layer and the Znq2 act as an EL emitting layer and electron transporting layer. In order to maximize luminance of ELD, TPD/Znq2/Al were deposited onto cleaned indium tin oxide (ITO) by changing thickness of EL emitting layer. The photoluminescence (PL) results show that Znq2 compound emits yellow green from 540nm. electrochemical behavior with V-J and V-L curve of carrier injection was investigated from 6 V. respectively. The maximum luminance were defected about $838 cd/m^2$. From these results, ai synthesized Znq2 material maybe one of the useful material of organic EL display material.

Luminance Characteristics of Organic Electroluminescent Devices Based on Znq12 by Heating (열처리된 Znq2에 기초한 유기 EL소자의 발광특성)

  • Jo, Seong-Ryeol;Jeong, Eun-Sil;Park, Su-Gil;Jeong, Pyeong-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.564-568
    • /
    • 1999
  • The 8-hydroxyquinoline Zinc(Znq2) were prepared successfully from zinc chloride and zinc acetate as two kinds of starting material. The organic electroluminescent devices(ELDs) were fabricated by the structure of ITO/TPD/Znq2/Al with N-N'-diphenyl-N-N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine(TPD) which acts hole trasporting layer and bis(8-oxyquinolino) zinc(II)(Znq2) which acts as emission and electron transporting layer. EL efficiency of Znq2 prepared by heating was investigated. The 570nm of main emission peak which is yellowich green was investigated by photo luminesence(PL) and this results shows that electro luminescence(EL) is from Znq2. The V-J curve shows that carrier injection were investigated from 4V. Maximum luminance and luminance efficiency were 1600cd/$\m^2$, 0.9lm/W. From this results, the Znq2 can be one of the useful organic EL material.

  • PDF

The Luminance characteristics of Red OELD based on Znq$_2$ and dye (Znq2와 dye에 의한 적색 OELD의 발광특성)

  • 조민정;최완지;박철현;임기조;박수길;김현후
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.358-360
    • /
    • 2001
  • In this study, the bis(8-oxyquinolino)zinc II (Znq$_2$) were synthesized successfully from zinc chloride (ZnC1$_2$) as a initial material. Then, we fabricated red organic electroluminescent device with a dye (DCJTB)-doped and inserted Znq$_2$ between emission layer and cathode layer for increasing EL efficiency. The hole transfer layer is a N,N'-diphenyl-N,N'-bis-(3-methyl phenyl) -1,1'-diphenyl-4,4'- diamine(TPD), and the host material of emission layer is Znq$_2$. And we study the electrical and optical properties of devices. We found that the device using Znq$_2$ inserting layer result in the increased efficiency.

  • PDF

Luminance Characteristics of a Novel Red-Light-Emitting Device Based on Znq2 and Dye

  • Cho, min-Jeong;Park, Wan-Ji;Lee, Jeong-Gu;Lim, In-Su;Lim, Kee-Joe;Kim, Hyun-Hoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.16-19
    • /
    • 2002
  • In this study, a novel red emitting organic electroluminescent (EL) device was fabricated with the bis(8-oxyquinolino)zinc II (Znq2) doped dye as an emitting layer. The Znq2 was synthesized successfully from zinc chloride (ZnC1$_2$) as an initial material. Then, we fabricated the red organic EL device with a dye (DCJTB) doped and inserted Znq2 between emission layer and cathode for increasing EL efficiency. The hole transporting layer is a N,N'-diphenyl-N,N'-bis-(3-methylphenyl)-1,1'-diphenyl-4,4-diamine (TPD), and the host material of emission layer is Znq2. And the electrical and luminance characteristics of the device were measured. We found that the EL device with Znq2 inserting layer results in the increasing luminance efficiency.

Characteristic of organic electroluminescent devices with 8-hydroxyquinoline Zinc($Znq_2$) as green-emitting material (녹색 발광 재료인 8-hydroxyquinoline Zinc($Znq_2$)를 이용한 유기 발광소자의 특성)

  • 박수길;정승준;정평진;정은실;류부형;박대희;이성구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.193-196
    • /
    • 1999
  • Organic electroluminescent devices have attracted a great deal of attention due to thier potential application to full-color flat-panel displays. The 8-hydroxyquinollne Zinc(Znq$_2$) were synthesized successfully from zinc chloride(ZnCl$_2$) and zinc acetate(Zn(C$_2$H$_3$O$_3$)$_2$) as green omitting material. A double-layer ELD consist of an emitting layer of B-hydroxyquinoline Zinc(Znq$_2$) and a hole-transport layer of tai-phenylene diamine(TPD) derivatives sandwiched between an Aluminium(Al) and Indium-Tin-Oxide(ITO) electrodes omitted green light resulting from Znq$_2$. The electroluminescent devices (ELD) exhibited a maximum luminance of 1000cd/$\textrm{cm}^2$ at a driving voltage of 8V and a driving current density of 0.4mA/$\textrm{cm}^2$.

  • PDF

Emission Properties of Red OELD with $Znq_2$ and dye (Znq2와 dye에 의한 적색 유기 전계 발광 소자의 발광특성)

  • Cho, M.J.;Choi, W.J.;Park, C.H.;Lim, K.J.;Park, S.K.;Kim, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1466-1468
    • /
    • 2001
  • For the full color organic electro-luminescent device, essentially, red, green, and blue emissions are required. But red emission is not to reach minimum level of practical use 31[lm/W]. In order to optimize color purity and power consumption requirements, it is important for the materials development efforts to search for improvements in red emission effisiency. In this study, the bis(8-oxyquinolino)zinc II ($Znq_2$) were synthesized successfully from zinc chloride($ZnCl_2$) as a initial material. Then, we fabricated red organic electroluminescent device with a dye(DCJTB)-doped and inserted $Znq_2$ between emission layer and cathode layer for increasing EL efficiency. The hole transfer layer is a N,N'-diphenyl-N,N'-bis-(3-methyl phenyl) -1,1'-diphenyl-4.4'-diamine(TPD), and the host material of emission layer is $Znq_2$. For the inserting of $Znq_2$, efficiency increased.

  • PDF

The Effect of Electron Injection Layer in Organic Electroluminescence Device Efficiency (전자 주입층이 유기EL소자 효율에 미치는 영향)

  • Choi, Kyung-Hoon;Sohn, Byung-Chung;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.297-301
    • /
    • 2002
  • We investigated the effect of electron injection layer on the performance of organic light emitting devices (OLEDs). As an electron injection layer, the quinolate metal complexes were used. We optimized the device efficiency by varying the thickness of the quinolate metal complexes layer. The device with 1 nm of the quinolate metal complexes layer showed significant enhancement of the device performance and device lifetime. We also compared the effect of 8-hydroxyquinolinolatolithium (Liq) with that of bis(8-quinolinolato)-zinc ($Znq_{2}$) and 8-hydroxyquinolinolatosodium (Naq) as an electron injection layer. As a result, Liq is considered as a better materials for the electron injection layer than $Znq_{2}$ and Naq.

Influence of Fluorescent Dye Doping on Efficiency of Red Organic Light-emitting Diodes (형광염료 도핑이 적색 유기 발광 소자의 효율에 미치는 영향)

  • Lee, Jeong-Gu;Lim, Kee-Joe
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.18-24
    • /
    • 2008
  • An organic light-emitting diode(OLED) has advantages of low power driving, self light-emitting, wide viewing angle, excellent high resolution, full color, high reproduction, fast response speed, simple manufacturing process, or the like. However, there are still a number of challenges to get over in order to put it to practical use as a high performance display. First of all, the most important thing is to improve the efficiency of the OLED element in order to commercialize it. To this end, its efficiency can be improved by lowering the driving voltage through the improvement of structure of the OLED element and the application of new organic substance. Therefore, in this study, we have manufactured a red OLED element by applying fluorescent dyes to the emitting layer of the element having the structure of ITO/TPD/ Znq2+DCJTB /Znq2/Al and the structure of ITO/CuPc/NPB/ Alq3+DCJTB/Alq3/Al, in order to light-emitting various colors or improve the brightness and the efficiency, and then we have evaluated its electrical and optical characteristics.

The Influence of Fluorescent Dye Doping on Efficiency of Organic Light-Emitting Diodes (형광염료 도핑이 유기발광소자의 효율에 미치는 영향)

  • Lee, jeong-gu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.301-305
    • /
    • 2008
  • An organic light-emitting diode(OLED) has advantages of low power driving, self light-emitting, wide viewing angle, excellent high resolution, full color, high reproduction, fast response speed, simple manufacturing process, or the like. However, there are still a number of challenges to get over in order to put it to practical use as a high performance display. First of all, the most important thing is to improve the efficiency of the OLED element in order to commercialize it. To this end, its efficiency can be improved by lowering the driving voltage through the improvement of structure of the OLED element and the application of new organic substance. Therefore, in this study, we have manufactured a red OLED element by applying fluorescent dyes to the emitting layer of the element having the structure of ITO/TPD/Znq2+DCJTB/Znq2/Al and the structure of ITO/CuPc/NPB/Alq3+DCJTB/Alq3/Al, in order to light-emitting various colors or improve the brightness and the efficiency, and then we have evaluated its electrical and optical characteristics.

  • PDF

Effect of Host Materials on Eelectrophosphorescence Properties of PtOEP-doped Organic Light-emitting Diodes

  • Kang, Gi-Wook;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.8 no.2
    • /
    • pp.15-19
    • /
    • 2007
  • We have studied the effect of host materials on the electrophosphorescence properties by comparing three different host materials such as tris(8-hydroxyquinoline)-aluminum (III) $(Alq_3)$, bis(8-hydroxyquinoline)-zinc (II) $(Znq_2)$, and 4,4'-N,N' dicarbazole-biphenyl (CBP) doped with a red-emissive phosphorescent dye, 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin platinum (II) (PtOEP). The EL spectra show a strong red emission (peak at 650 nm) from the triplet excited state of PtOEP and a very weak emission from an electron transport layer of $Alq_3$ and a hole transport layer of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenyl-4,4'-diamine (TPD). We find that the triplet exciton lifetime and the quantum efficiency decrease in the order of CBP, $Alq_3$, and $Znq_2$ host materials. The results are interpreted as a poor exciton confinement in $Alq_3$, and $Znq_2$ host compared with in CBP. Therefore, it is very important for the triplet-exciton confinement in the emissive layer for obtaining a high efficiency.