• Title/Summary/Keyword: $ZnS_x(OH)_y$

Search Result 25, Processing Time 0.018 seconds

Magnetic Properties of Hard/Soft Nanocomposite Ferrite Synthesized by Self-Combustion Precursors (자전 연소 전구체로 합성한 나노 크기 경/연 복합페라이트의 자기 특성)

  • Oh, Young Woo;Ahn, Jong Gyeon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.45-50
    • /
    • 2015
  • The goal of this research is the create novel magnets with no rare-earth contents, with larger energy product by comparison with currently used ferrites. For this purpose we developed nano-sized hard-type/soft-type composite ferrite in which high remanent magnetization (Mr) and high coercivity (Hc). Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ composite ferrites were prepared by sol-gel combustion method by use of glicine-nitrate and citric acid. Nanocomposite ferrites were calcined at temperature range $700-900^{\circ}C$ for 1h. According to the X-ray diffraction patterns and FT-IR spectra, single phase of NiZn-ferrite and Ba-ferrite were detected and hard/soft nanocomposite ferrite was indicated to the coexistence of the magnetoplumbite-structural $BaFe_{12}O_{19}$ and spinel-structural $Ni_{0.5}Zn_{0.5}Fe_2O_4$ that agreed with the standard JCPDS 10-0325 data. The particle size of nanocomposite turn out to be less than 120 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite ferrite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that of the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite, and $(BH)_{max}$ is increased slightly.

Adsorption Behavior of Metal ions by Na-Cellulose (Na-셀룰로스에 대한 금속이온들의 흡착성에 관한 연구)

  • Lee, Tack-Hyuck;Yoon, Koog-Joong
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.271-276
    • /
    • 1994
  • A Na-cellulose adsorbent was prepared by treating Sigma S-5504 cellulose with 2M NaOH and examined the adsorption behavior between metal ions and Na-cellulose in aqueous solution with batch method. Considering ion exchange capacity of Na-cellulose, the adsorption ratio of the Na-cellulose to metals charge equivalent indicated that the adsorption result from ion exchanging between metal ions and Na-cellulose. The enthalpy for the metal adsorption on the Na-cellulose was calculated to -18kcal/mol, which value was compared to those of carboxymethylcellulose(CMC) and Dowex 50W-X8, these result suggested that the adsorption on Na-cellulose resulted from ion exchange adsorption.

  • PDF

Ingredients and cytotoxicity of MTA and 3 kinds of Portland cements (MTA와 포틀랜드 시멘트의 구성성분분석과 세포독성에 관한 연구)

  • Chang, Seok-Woo;Yoo, Hyun-Mi;Park, Dong-Sung;Oh, Tae-Seok;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.369-376
    • /
    • 2008
  • The aim of this study was to compare the compositions and cytotoxicity of white ProRoot MTA (white mineral trioxide aggregate) and 3 kinds of Portland cements. The elements, simple oxides and phase compositions of white MTA (WMTA), gray Portland cement (GPC), white Portland cement (WPC) and fast setting cement (FSC) were measured by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray fluorescence spectrometry (XRF) and X-ray diffractometry (XRD). Agar diffusion test was carried out to evaluate the cytotoxicity of WMTA and 3 kinds of Portland cements. The results showed that WMTA and WPC contained far less magnesium (Mg), iron (Fe), manganese (Mn), and zinc (Zn) than GPC and FSC. FSC contained far more aluminum oxide ($Al_2O_3$) than WMTA, GPC, and WPC. WMTA, GPC, WPC and FSC were composed of main phases. such as tricalcicium silicate ($3CaO{\cdot}SiO_2$), dicalcium silicate ($2CaO{\cdot}SiO_2$), tricalcium aluminate ($3CaO{\cdot}Al_2O_3$), and tetracalcium aluminoferrite ($4CaO{\cdot}Al_2O_3{\cdot}Fe_2O_3$). The significance of the differences in cellular response between WMTA, GPC, WPC and FSC was statistically analyzed by Kruskal-Wallis Exact test with Bonferroni' s correction. The result showed no statistically significant difference (p > 0.05). WMTA, GPC, WPC and FSC showed similar compositions. However there were notable differences in the content of minor elements. such as aluminum (Al), magnesium, iron, manganese, and zinc. These differences might influence the physical properties of cements.

Janggunite, a New Mineral from the Janggun Mine, Bonghwa, Korea (경북(慶北) 봉화군(奉化郡) 장군광산산(將軍鑛山産) 신종광물(新種鑛物) 장군석(將軍石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 1975
  • Wet chemical analysis (for $MnO_2$, MnO, and $H_2O$(+)) and electron microprobe analysis (for $Fe_2O_3$ and PbO) give $MnO_2$ 74.91, MnO 11.33, $Fe_2O_3$ (total Fe) 4.19, PbO 0.03, $H_2O$ (+) 9.46, sum 99.92%. 'Available oxygen determined by oxalate titration method is allotted to $MnO_2$ from total Mn, and the remaining Mn is calculated as MnO. Traces of Ba, Ca, Mg, K, Cu, Zn, and Al were found. Li and Na were not found. The existence of (OH) is verified from the infrared absorption spectra. The analysis corresponds to the formula $Mn^{4+}{_{4.85}}(Mn^{2+}{_{0.90}}Fe^{3+}{_{0.30}})_{1.20}O_{8.09}(OH)_{5.91}$, on the basis of O=14, 'or ideally $Mn^{4+}{_{5-x}}(Mn^{2+},Fe^{3+})_{1+x}O_{8}(OH)_{6}$ ($x{\approx}0.2$). X-ray single crystal study could not be made because of the distortion of single crystals. But the x-ray powder pattern is satisfactorily indexed by an orthorhombic cell with a 9.324, b 14.05, c $7.956{\AA}$., Z=4. The indexed powder diffraction lines are 9.34(s) (100), 7.09(s) (020), 4.62(m) (200, 121), 4.17(m) (130), 3.547(s) (112), 3.212(vw) (041), 3.101(s) (300), 2.597(w) (013), 2.469(m) (331), 2.214(vw)(420), 2.098(vw) (260), 2.014 (vw) (402), 1.863(w) (500), 1.664(w) (314), 1.554(vw) (600), 1.525(m) (601), 1.405(m) (0.10.0). DTA curve shows the endothermic peaks at $250-370^{\circ}C$ and $955^{\circ}C$. The former is due to the dehydration: and oxidation forming$(Mn,\;Fe)_2O_3$(cubic, a $9.417{\AA}$), and the latter is interpreted as the formation of a hausmannite-type oxide (tetragonal, a 5.76, c $9.51{\AA}$) from $(Mn,\;Fe)_2O_3$. Infrared absorption spectral curve shows Mn-O stretching vibrations at $515cm^{-1}$ and $545cm^{-1}$, O-H bending vibration at $1025cm^{-1}$ and O-H stretching vibration at $3225cm^{-1}$. Opaque. Reflectance 13-15%. Bireflectance distinct in air and strong in oil. Reflection pleochroism changes from whitish to light grey. Between crossed nicols, color changes from yellowish brown with bluish tint to grey in air and yellowish brown to grey through bluish brown in oil. No internal reflections. Etching reactions: HCl(conc.) and $H_2SO_4+H_2O_2$-grey tarnish; $SnCl_2$(sat.)-dark color; $HNO_3$(conc.)-grey color; $H_2O_2$-tarnish with effervescence. It is black in color. Luster dull. Cleavage one direction perfect. Streak brownish black to dark brown. H. (Mohs) 2-3, very fragile. Specific gravity 3.59(obs.), 3.57(calc.). It occurs as radiating groups of flakes, flower-like aggregates, colloform bands, dendritic or arborescent masses composed of fine grains in the cementation zone of the supergene manganese oxide deposits of the Janggun mine, Bonghwa-gun, southeastern Korea. Associated minerals are calcite, nsutite, todorokite, and some undetermined manganese dioxide minerals. The name is for the mine, the first locality. The mineral and name were approved before publication by the Commission on New Minerals and Mineral Names, I.M.A.

  • PDF

Mobility of Transition Metals by Change of Redox Condition in Dump Tailings from the Dukum Mine, Korea (덕음광산 광미의 산화${\cdot}$환원 조건에 따른 전이원소의 이동성)

  • 문용희;문희수;박영석;문지원;송윤구;이종천
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.285-293
    • /
    • 2003
  • Tailings of Dukum mine in the vadose and saturated zone were investigated to reveal the mobility of metal elements and the condition of mineralogical solubility according to redox environments throughout the geochemical analysis, thermodynamic modelling, and mineralogical study for solid-samples and water samples(vadose zone; distilled water: tailings=5 : 1 reacted, saturated zone; pore-water extracted). In the vadose zone, sulfide oxidation has generated low-pH(2.72∼6.91) condition and high concentration levels of S $O_4$$^{2-}$(561∼1430mg/L) and other metals(Zn : 0.12∼l57 mg/L, Pb : 0.06∼0.83 mg/L, Cd : 0.06∼l.35 mg/L). Jarosite$(KFe_3(SO_4)_2(OH)_6)$ and gypsum$(CaSO_4{\cdot}2H_2O$) were identified on XRD patterns and thermodynamics modelling. In the saturated zone, concentration of metal ions decreased because pH values were neutral(7.25∼8.10). But Fe and Mn susceptible to redox potential increased by low-pe values(7.40∼3.40) as the depth increased. Rhodochrosite$(MnCO_3)$ identified by XRD and thermodynamics modelling suggested that $Mn^{4+}$ or $Mn^{3+}$ was reduced to $Mn^{2+}$. Along pH conditions, concentrations of dissolved metal ions has been most abundant in vadose zone throughout borehole samples. It was observed that pH had more effect on metal solubilities than redox potential. How-ever, the release of co-precipitated heavy metals following the dissolution of Fe-Mn oxyhydroxides could be the mechanism by which reduced condition affected heavy metal solubility considering the decrease of pe as depth increased in tile saturated zone.