• Title/Summary/Keyword: $ZnFe_2O_4$

Search Result 484, Processing Time 0.031 seconds

Formation and Color of the Spinel Solid Solution in NiO-ZnO-$Fe_2O_3$-$TiO_2$-$SnO_2$ System (NiO-ZnO-$Fe_2O_3$-$TiO_2$-$SnO_2$ 계 Spinel 고용체의 생성과 발색에 관한 연구)

  • 이응상;이진성
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.4
    • /
    • pp.305-314
    • /
    • 1991
  • This study was conducted to research the formation and the color development of NiO-ZnO-Fe2O3-TiO2-SnO2 system for the purpose of synthesizing the spinel pigments which are stable at high temperature. After preparing ZnO-Fe2O3 as a basic composition, {{{{ chi }}NiO.(l-{{{{ chi }})ZnO.Fe2O3 system, {{{{ chi }}NiO.(l-{{{{ chi }})ZnO.TiO2 system, and {{{{ chi }}NiO.(l-{{{{ chi }})ZnO.SnO2 system were prepared with {{{{ chi }}=0, 0.2, 0.5, 0.7, 1 mole ratio respectively. The manufacturing was carried out at 128$0^{\circ}C$ for 30 minutes. The reflectance measurement and the X-ray analysis of these specimens were carried out and the results were summarized as follows. 1. In the specimens which included NiO, it was difficult for the spinel structure to be formed. 2. As increasing the contents of NiO and Fe2O3, all the groups which were yellow or green colored changed to brown. 3. NiO-ZnO-Fe2O3 system and NiO-ZnO-TiO2 system formed the spinel structure and the illmenite structure appeared in NiO-TiO2 system.

  • PDF

Bioassessment of Nanoparticle Toxicity based on Seed Germination and Germination Index of Various Seeds (다양한 씨앗의 발아 및 발아지수에 근거한 나노입자 생물학적 독성평가)

  • Gu, Bon Woo;Lee, Min Kyeung;Shi, Yu Tao;Kong, In Chul
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • This study investigated the effects of six metal oxide nanoparticles (NPs: CuO, NiO, TiO2, Fe2O3, Co3O4, ZnO) on seed germination and germination index (G.I) for five types of seeds: Brassica napus L., Malva verticillata L., Brassica olercea L., Brassica campestris L., Daucus carota L. NPs of CuO, ZnO, NiO show significant toxicity impacts on seed activities [CuO (6-27 mg/L), ZnO (16-86 mg/L), NiO (48-112 mg/L)], while no significant effects were observed at > 1000 mg/L of TiO2, Fe2O3, Co3O4. Tested five types of seed showed different sensitivities on seed germination and root activity, especially on NPs of CuO, ZnO, NiO. Malva verticillata L. seed was highly sensitive to toxic metal oxide NPs and showed following EC50s : CuO 5.5 mg/L, ZnO 16.4 mg/L, NiO 53.4 mg/L. Mostly following order of toxicity was observed, CuO > ZnO > NiO > Fe2O3 ≈ Co3O4 ≈ TiO2, where slightly different toxicity order was observed for carrot, showing CuO > NiO ≈ ZnO > Fe2O3 ≈ Co3O4 ≈ TiO2.

Kinetics of $CO_2$ decomposition over CuO-Magnetite and ZnO-Magnetite catalysts (CuO-Magnetite 및 ZnO-Magnetite 촉매상에서 $CO_2$ 분해반응속도론)

  • Yang, Chun-Mo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.79-85
    • /
    • 1998
  • $Cu_xFe_{3-x}O_4$ catalyst and $Zn_xFe_{3-x}O_4$ catalyst were synthesized by the air oxidation method with various C(II) and Zn(II) weights. Activated catalysts decomposed carbon dioxide to carbon at $350^{\circ}C$, $380^{\circ}C$, $410^{\circ}C$ and $440^{\circ}C$. The value of carbon dioxide decomposition rate for $Cu_{0.003}Fe_{2.997}O_4$ and $Zn_{0.003}Fe_{2.997}O_4$ catslysts than was better catalysts. The decomposed rate of the catalysts is about 85%${\sim}$90%. The reaction rate constant(4.00 $psi^{1-{\alpha}}/min$) and activation energy(2.62 kcal/mole) of $Cu_{0.003}Fe_{2.997}O_4$ catalyst are better than $Zn_{0.003}Fe_{2.997}O_4$

Synthesis and Properties of Ni-Zn Ferrite by Wet-Direct Process (습식 직접 합성법에 의한 Ni-Zn Ferrite의 합성 및 물성 연구)

  • 이경희;이병하;이융걸;황우연
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.3
    • /
    • pp.225-233
    • /
    • 1991
  • In this study, we tried to find out the appropriate synthetic condition and magnetic properties of Ni-Zn ferrite {(NixZn1-x)Fe2O4} powders (where X=0, 0.1, 0.2, 0.3, ……0.9, 1). Ferrite powders were prepared by wet-direct method at 86℃ for 6hrs from FeCl36H2O, NiCl26H2O, and ZnCl2. The powders of (NixZn1-x)Fe2O4 (where X=0.4, 0.5, 0.6) have a good crystallinity, but the other ferrite powders consist of crystal and precursor ferrite. The ferrite powder's lattice constant is increased when ratio of ZnO contant is increased in the ferrite composition. And initial permeability was measured after sintering, result indicated regular pattern except (Ni0.4Zn0.6)Fe2O4 when the frequency were changed 10KHz to 10MHz.

  • PDF

Ni0.5Zn0.4Cu0.1Fe2O4 Complex Ferrite Nanoparticles Synthesized by Chemical Coprecipitation Predicted by Thermodynamic Modeling

  • Kang, Bo-Sun;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kwang-Hyun;Tae, Ki-Sik;Lee, Hyun-Ju;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.231-237
    • /
    • 2013
  • Thermodynamic modeling of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite system has been adopted as a rational approach to establish routes to better synthesis conditions for pure phase $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite. Quantitative analysis of the different reaction equilibria involved in the precipitation of $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ from aqueous solutions has been used to determine the optimum synthesis conditions. The spinel ferrites, such as magnetite and substitutes for magnetite, with the general formula $MFe_2O_4$, where M= $Fe^{2+}$, $Co^{2+}$, and $Ni^{2+}$ are prepared by coprecipitation of $Fe^{3+}$ and $M^{2+}$ ions with a stoichiometry of $M^{2+}/Fe^{3+}$= 0.5. The average particle size of the as synthesized $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$, measured by transmission electron microscopy (TEM), is 14.2 nm, with a standard deviation of 3.5 nm the size when calculated using X-ray diffraction (XRD) is 16 nm. When $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite is annealed at elevated temperature, larger grains are formed by the necking and mass transport between the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite nanoparticles. Thus, the grain sizes of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ gradually increase as heat treatment temperature increases. Based on the results of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC) analysis, it is found that the hydroxyl groups on the surface of the as synthesized ferrite nanoparticles finally decompose to $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ crystal with heat treatment. The results of XRD and TEM confirmed the nanoscale dimensions and spinel structure of the samples.

The Study on Mössbauer Spectroscopy of Zn1-xFexO (Zn1-xFexO의 뫼스바우어 분광학적 연구)

  • Kim, S.J.;Lee, S.R.;Park, C.S.;Kim, E.C.;Joh, Y.G.;Kim, D.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.75-78
    • /
    • 2008
  • $AB_2X_4$(A, B=Transition Metal, X=O, S, Se) are cubic spinel normal ferrimagnets, in which M ions occupy the tetrahedral sites and Cr ions occupy the octahedral sites. Recently, they have been investigated for behaviour of B site ions and A-B interaction. Polycrystalline $[Co_{0.9}Zn_{0.1}]_A[Cr_{1.98}{^{57}Fe_{0.02}}]_BO_4$ compound was prepared by wet-chemical process. The ferrimagnetic transition was observed around 90K. $M\"{o}ssbauer$ absorption spectra at 4.2K show that the well-developed two sextets are superposed with small difference in hyperfine fields($H_{hf}$). The hyperfine fields of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$ and $Co_{0.9}Zn_{0.1}Cr_{1.98}{^{57}Fe_{0.02}}O_4$ were determined to be 488, 478 kOe and 486, 468 kOe, respectively. We notice that the one of the magnetic hyperfine field values changes with Zn ion substitution. These results suggest the incommensurate states and spin-reorientation temperature($T_S=18K$) changes with Zn ions substitution below spin-reorientation temperature($T_S=28K$) of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$

Decomposition of Carbon Dioxide using $Zn_{x}Fe_{3-x}O_{4-{\delta}}$ (($Zn_{x}Fe_{3-x}O_{4-{\delta}}$를 이용한 이산화탄소의 분해)

  • Yang, Chun-Mo;Cho, Young-Koo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 2000
  • $Zn_{x}Fe_{3-x}O_{4}(0.00.<X<0.08)$ was synthesized by air oxidation method for the decomposition of carbon dioxide. We investigated the characteristics of catalyst, the form of methane by gas chromatograph after decomposition of carbon dioxide and kinetic parameter. $Zn_{x}Fe_{3-x}O_{4}(0.00.<X<0.08)$ was spinel type structure. The surface areas of catalysts($Zn_{x{Fe_{3-x}O_{4}(0.00.<X<0.08)$) were $15{\sim}27$ $m^{2}/g$. The shape of $Zn_{0.003}Fe_{2.997}O_{4}$ was sphere. The optimum temperature for the decomposition of carbon dioxide into carbon was $350^{\circ}C$. $Zn_{0.003}Fe_{2.997}O_{4}$ showed the 85% decomposition rate of carbon dioxide and the degree of reduction by hydrogen(${\delta}$) of $Zn_{0.003}Fe_{2.997}O_{4}$ was 0.32. At $350^{\circ}C$, the reaction rate constant and activation energy of $Zn_{0.003}Fe_{2.997}O_{3.68}$ for the decomposition of carbon dioxide into carbon were 3.10 $psi^{1-{\alpha}}/min$ and 0.98 kcal/mole respectively. After the carbon dioxide was decomposed, the carbon which was absorbed on the catalyst surface was reacted with hydrogen and it became methane.

Crystallization and Magnetic Properties of Iron Doped ZnO Diluted Magnetic Semicondutor (철을 미량 치환한 ZnO 희박자성반도체의 결정학적 및 자기적 특성 연구)

  • Ahn, Geun-Young;Park, Seung-Iel;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.92-95
    • /
    • 2005
  • $Zn_{1-x}\;^{57}Fe_xO(x=0.01, 0.02, 0.03)$ compounds were fabricated using the solid-state reaction method. In order to determine magnetic behavior and ionic state of the doped transition metal ($^{57}Fe$) in ZnO, we carried out $M\ddot{o}ssbauer$ measurements at various temperatures ranging from 13 to 295 K. $M\ddot{o}ssbauer$spectra for $Zn_{0.97}\;^{57}Fe_{0.03}O$ at 4.2 K have shown the ferromagnetic phase (sextet), but the only paramagnetic phase (doublet) is seen at 295 K. The hysteresis loop below 77 K for $Zn_{0.97}\;^{57}Fe_{0.03}O$ indicated the coexistence of ferromagnetic and paramagnetic phases.

Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method

  • Choi, Won-Ok;Kwon, Woo Hyun;Chae, Kwang Pyo;Lee, Young Bae
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Nickel substituted nano-sized ferrite powders, $Co_{1-x}Ni_xFe_2O_4$, $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$), were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently compared. The lattice constants decreased as quantity of nickel substitution increased, while the particle size decreased in $Co_{1-x}Ni_xFe_2O_4$ ferrite but increased for the $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites. For the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$) ferrite powders, the $M{\ddot{o}}ssbauer$ spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of $Mn_{0.8}Zn_{0.1}Ni_{0.1}Fe_2O_4$ consisted of two Zeeman sextets and one single quadrupole doublet due to the ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explain the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. The saturation magnetization decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. The coercivity decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. These variations could thus be explained by using the site distribution equations, particle sizes and spin magnetic moments of the substituted ions.

An XRD Study on the Structures of Ferrites : Hematite, Ba-ferrite and Zn2Y(Ba2Zn2Fe12O22) (분말 X-선 회절법에 의한 페라이트의 구조 연구 : 헤마타이트, 바륨페라이트, Zn2Y(Ba2Zn2Fe12O22))

  • 신형섭;권순주
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.499-509
    • /
    • 1993
  • Structures of hematite(${\alpha}$-Fe2O3), Ba-ferrite(BaFe12O19) and Zn2Y(Ba2Zn2Fe12O22) were studied by powder X-ray diffraction(XRD) method. Powder XRD patterns of the ferrites were analyzed with the Rietveld method, and the final refined R-factors were RWP<0.01 and RI<0.03. The lattice parameters refined with hexagonal crystal system were a=5.0342${\AA}$, c=13.746${\AA}$ for hematite, a=5.8928${\AA}$, c=23.201${\AA}$ for Ba-ferrite, and a=5.8763${\AA}$, c=43.567${\AA}$ for Zn2Y. In the hematite, the oxygen parameter is 0.3072 and the Fe-O distances in FeO6octahedron are 1.941${\AA}$ and 2.118${\AA}$, close to the single crystal data of Blake et al.. In the Ba-ferrite, the Fe atom in oxygen trigonal bipyramid is displaced 0.155${\AA}$ away from the BaO3 mirror plane into 4e position. In the Zn2Y, 75% of Zn is located at the oxygen terahedral site in S-block.

  • PDF